Prologue: Charm Physics -- like Botticelli in the Sistine Chapel in Rome

> Ikaros Bigi Notre Dame du Lac

One of the premier tourist destinations in Rome is the Sistine Chapel -- because of Michelangelo's frescoes.

Botticelli's frescoes there get often overlooked; he cannot quite match Michelangelo -- yet is still a world class artist.

Lesson of this comparison: maybe better to do charm physics at a tau-charm than a B factory where it is `second fiddle'

Rare Charm Decays, D⁰-D⁰ Oscillations & CP --Novel Windows onto New Physics

Ikaros Bigi Notre Dame du Lac

SM amazingly successful in describing data - in particular concerning flavour dynamics and
 w the CP phenomenology (except possibly B_d→φ K_S)
 yet strong circumstantial theor. evidence it is incomplete!

New Physics confidently expected around TeV scale
 This is the justification for the LHC

- LHC (TEVATRON ?) is likely to uncover New Physics
 - LHC (TEVATRON) is primarily a discovery machine
 - Linear Collid. a high sensitivity probe of the New Physics
- New Physics around TeV scale could affect flavour transitions significantly
- Heavy flavour decays provide probe for New Physics that is complementary to the TEVATRON, LHC & Linear Collider
- If LHC does not uncover New Physics, none of the arguments for the incompleteness of the SM will go away
 heavy flavour transitions might be only chance to reveal New Physics
- no matter what ... a comprehensive & dedicated heavy flavour program will be essential for fundamental physics!

- The New Physics is not likely to shed light on flavour puzzle
 - of SM (though it could);
 - instead studies of flavour transitions might elucidate salient features of the New Physics
 - baryon # of Universe implies New Physics beyond CKM discovery of predicted large asymmetry in $B_d \rightarrow \psi K_S$ has `demystified' C^P : if observable weak phases can arise, they can be large!
- Prime lab for New Physics: B decays
 - bighly KM suppressed
 - © speedy (rapid) B⁰-B⁰ oscillations
 - 😊 direct access to large phases
- many of QCD lessons learnt in charm applied in B decays

but ... charm decays as a direct probe for New Physics?

basic contention: charm transitions are a unique portal for obtaining a novel access to the flavour problem with the experimental situation being a priori favourable (apart from absence of Cabibbo suppression)!

© SM weak phenomenology rather dull affair with

- Slow' D⁰ D⁰ oscillations,
- ✤ `small' CP asymm.
- `zero-background' search for New Physics ?

⇒ yet ... "how slow is `slow' and how small is `small'?"
 □ x_D < 3 %; y_{D,CP} = (1 ± 0.5) %
 □ direct *C*P < (few to several) %

- 😕 leading charm decays Cabibbo allowed
- Over the second seco
- © effective weak phase unusually small in CKM description
- Charm only up-type quark allowing full range of probes of flavour couplings, including flavour-changing neutral currents
 - π^0 decays electromagnetically, no π^0 π^0 oscillations, ...
 - 🔸 top quarks do not hadronize
 - no T⁰-T⁰ oscillations
 - CP asymm. highly reduced due to lack of coherence

The Menu

- I Rare Decays
- II D⁰-D⁰ Oscillations
- III CP Violation
- IV The Pantheon List
- V Conclusions & Outlook

I Rare Decays

(1.1) Unequivocal Signals of New Physics

○ must be done
 ○ no helicity or f_D suppression
 ○ $\Gamma \sim (1/M_X)^4$

(1.2) Potential Signals of New Physics

Caveat: drawing a Feynman diagram does not mean one knows how to evaluate it even semiguantitatively!

(1.2.1) Adagio, ma non troppo

 $D \rightarrow \gamma V$, $V=\rho,\omega,\phi$

SM expectations: BR($D^0 \rightarrow \gamma K^{*0}$) = (6-36)×10⁻⁵, BR($D^0 \rightarrow \gamma \rho^0$) = (0.1-1)×10⁻⁵ BR($D^0 \rightarrow \gamma \omega$) = (0.1-0.9)×10⁻⁵, BR($D^0 \rightarrow \gamma \phi$) = (0.1-3.4)×10⁻⁵

BELLE: BR($D^0 \rightarrow \gamma \phi$) = (2.6^{+0.70}-0.61 +0.15 -0.17)×10⁻⁵

Motivation

- learning about LD contributions to $B \rightarrow \gamma V$
- → probing for New Physics (nonminimal SUSY) calibrate SM contrib. by $D^0 \rightarrow \gamma K^{*0} \& D^0 \rightarrow \gamma \phi$

(1.2.2) Rarest of the Rare

$$D^{0} \rightarrow \gamma \gamma$$
 SM expect.: BR($D^{0} \rightarrow \gamma \gamma$) = (1-3.5)×10⁻⁸

- ⓒ clean signature: $BR(D^0 \rightarrow \mu^-\mu^+) < 4.1 \times 10^{-6}$
- 🙂 must be done
- \otimes helicity suppressed: $(m_{\mu}/m_{c})^{2} \sim 0.007$
- $\odot f_{\rm D}$ " : $(f_{\rm D}/m_c)^2 \sim 0.04$
- \oplus BR(D⁰ $\rightarrow \mu^{-}\mu^{+})|_{NP} \sim 10^{-11}/8 \times 10^{-8}/3.5 \times 10^{-6}$

II D⁰-D⁰ Oscillations

- Gascinating quantum mechanical phenomenon
- \odot can have impact on extracting ϕ_3/γ from $B^{\pm} \rightarrow DK^{\pm}$ A.Bondar
- ambiguous probe for New Physics (=NP)
- important ingredient for NP CP asymm. in D⁰ decays

considerable previous literature -- yet with several ad-hoc elements mainly with respect to nonperturbative dynamics

systematic analysis based on Operator Product Expansion

expansion in powers of 1/m_c, m_s, KM (Uraltsev, IB, Nucl. Phys. B592('01))

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe! 3 contributions from higher-dimensional operators with a very gentle GIM factor ~ m_s/μ_{had} ... due to condensates in the OPE!

- □ $x_{D}(SM)|_{OPE}, y_{D}(SM)|_{OPE} \sim O(10^{-3})$
- unlikely uncertainties can be reduced
- furthermore central theoretical issue:

does quark-hadron duality hold at the charm scale?

- \bullet more averaging in x_D than in y_D
- duality better in x_D than in y_D

general expectations

 $\circ \Delta \Gamma$: on-shell contributions

- ~ insensitive to New Physics
- \circ Δm : virtual intermediate states

sensitive to New Physics
 x_D ~ O (few %) conceivable in models

 $\begin{cases} \text{for } x_{\text{D}} \leq \text{few } \times 10^{-3} \text{: } 1/\text{m}_{\text{c}} \text{ expan. okay!} \\ \text{if } y_{\text{D}} \sim 0.01 \end{cases}$

for x_D ~ 0.01: theor. conundrum

sobering lesson: case for New Physics based on x_D uncertain!

search for \mathcal{C}^{P} in D^{O} - $\overline{\mathsf{D}}^{\mathsf{O}}$ oscillations

Caveat en passant:

 $\Box \Delta \Gamma(B_s)$ vulnerable to violations of local duality!

remember when extracting |V(td)| from $\Delta m(B_d) / \Delta \Gamma(B_s)$

definitive measurement:
 x_D, y_D down to 0.001

III CP Violation

- ☺ baryon # of Universe implies/requires NP in ∠P dynamics
- within SM:
 - Image: which we have a state of the second se
 - No weak phase in Cab. favoured & 2 x Cab. supp. modes (except for D[±] → K_Sh[±])
- © CP asymmetry linear in NP amplitude
- © final state interactions large
- ☺ BR's for CP eigenstates large
- \mathfrak{S} D⁰-D⁰ oscillations at best slow

need 2 different, yet coherent weak amplitudes for CP to become observable

(3.1) Direct *CP* in Widths

(3.1.1) time integrated partial widths

in Cabibbo favoured (CF) modes
 possible only with New Physics (except *)

in singly Cabibbo supp. modes (SCS)
 possible with KM -- benchmark: O(λ⁴) ~ O(10⁻³)
 New Physics models: O(%) conceivable
 if observe direct Ø ~ 1% in SCS decays
 New Physics or hadronic enhancement?
 necessary condition: analyze host of channels
 in doubly Cabibbo supp. modes (DCS)
 possible only with New Physics (except *)

exception *: $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ interference between $D^{+} \rightarrow K^{0} \pi^{+}$ and $D^{+} \rightarrow K^{0} \pi^{+}$ CF in KM only effect from \mathcal{CP} in K⁰ - K⁰ asymmetry $A_{S,L} = [+]_{S,L} - [-]_{S,L} = -3.3 \times 10^{-3}$ with NP in DCS amplitude could reach O(1%)of either sign and $A_{S} = -A_{L}$

(3.1.2) Final state distributions: Dalitz plots, T-odd moments

final state interact.Image: state

very promising

most effective theoretical tools not developed yet for small asymmetries

(3.2) CP involving D⁰-D⁰ oscillations: `indirect' CP

asymmetry is linear in x_D whereas r_D is quadratic

could be first signal of oscillations!

- 3 scenarios for analyzing
- measure $sin\Delta m_D$ t dependence directly through μ vertex detector

 $\gamma/h p \rightarrow D^{*+} X$ $\downarrow D^{0} \pi^{+}$ $\downarrow f$

 `trading time for space' or `poor man's picosecond clock' measure indirectly exploiting EPR correlations IB 1987 IHEP

if CP | $f_i > = \eta_i | f_i > \& \eta_1 \eta_2 = +1$

•• if $f_1 = f_2$ without being a CP ES

→ indirect CP!

homework assignment: how can this be consistent with Bose statistics?

(3.3) Benchmarks

for definitive measurements must aim at:

- x_D , y_D down to $O(10^{-3})$ \Leftrightarrow $r_D \sim O(10^{-6} 10^{-5})$
- time dependant CP asymmetries in $D^0 \rightarrow K^+K^-, \pi^+\pi^-, K_S \phi$ down to O (10⁻⁴); $D^0 \rightarrow K^+\pi^-$ down to O (10⁻³).
- o direct $\mathcal{C}P$ in partial widths of

 $D^{\pm} \rightarrow K_{S[L]}\pi^{\pm}$ down to $O(10^{-3})$; in a host of SCS channels down to $O(10^{-3})$.

direct *Q* in the final state distributions:
 Dalitz plots, T-odd correlations etc. down to *O* (10⁻³).

V Outlook & Conclusions

Lombardi:"Winning is'n the greatest thing - it's the only thing!"

- QCD is the `only' thing -- still
- lessons to learn
- control to establish
- `Seth's discriminator': the gluon
- An experimenter's work starts with the gluon.
- A phenomenologist's work ends with it.
- 8 A true theorists asks"What is a gluon?"

 $SU(2) \times U(1)$ is not even the greatest thing

New Physics must exist!

"the frugal daughter"

challenge:

Do many, many things --excellently! "the free-spending daughter"

`The poor sleeper's impatience' A man wakes up at night, Sees it is dark outside and falls asleep again. A short while later he awakes anew, Notices it still to be dark outside and goes back to sleep.

This sequence repeats itself a few times

- waking up, seeing the dark outside and falling asleep again Till he cries out in despair:
- "Will there never be daylight?"
- A bird starts to sing.

