Opportunities for τ Physics

- Overview of Tau's at low energy
- Tau Threshold Measurements
 - Tau Mass
 - Massive Neutrino in $\tau \rightarrow \mu \nu \nu$
 - Exotic Decays: $\tau \rightarrow eX$
 - Radiative Leptonic Decays
 - Tau Atoms
- High Statistics Measurements
 - Precision Branching Fractions
 - Hadronic structure
 - Rho Line Shape
 - CP Violation
 - Lorentz Structure
 - Neutrino Mass

Spectroscopy Is Everything

Small Sample near Threshold Larger sample with Charm background

Compare: CLEO2+3 = 15 M $\tau\tau$, Belle, Babar > 100 M+ $\tau\tau$

Event Kinematics

- τ 's are always produced in pairs and always have >0 v's
- τ's are slow decay products are less smeared than B Factory
- Two Body $\tau \rightarrow [X]\nu$ momentum of [X] is sharp for narrow [X]
- $\tau \rightarrow \pi / \rho v$ are convenient tags in addition to $\tau \rightarrow e / \mu v v$ tags
- Bhabha/µµ bgd not a problem
- No ISR/FSR at threshold
- BUT: τ decay not jet-like

т Backgrounds

- Bhabha/ $\mu\mu(\gamma)$ not a problem
- Below charm: uds background
 - Use missing E,P cuts
 - Use 1 prong tags
 - Use sample below τ threshold to get MC right
- Charm:
 - D semileptonic, K⁰ decay bgd
 - Use missing E,P cuts
 - Use 1 prong tags
 - Use tagged charm sample to get charm MC right
 - Use (uds) sample to get (uds) MC right
- τ Feed across: need to get MC right

Tau Threshold Measurements

- Tau Mass
- Massive Neutrino in $\tau \rightarrow \pi v$
- Exotic Decays: $\tau \rightarrow eX$
- Radiative Leptonic Decays
- Tau Atoms

Tau Mass

This is a fundamental number in the Standard Model Important in precision work - eg BR($\tau \rightarrow I\nu\nu$) vs τ_{τ}

Current best tau mass is from BES:

 $m_{\tau} = 1776.96^{+0.18+0.25}_{-0.21-0.17} MeV$

Obtained by scanning near rapidly varying threshold 5 pb⁻¹, 2 months, narrow σ (Ebeam)

CLEO-c/BESIII can get sample > x50 greater in same time

Most of BES error was from Energy Scale from ψ , ψ ', not spread σ (Ebeam) is 2x as large in default config compare to BESII can be made comparable at lower lumi

Look for anomalous production effects too

BESIII, CLEO-c could get $\sigma \approx 0.1$ MeV

No one else can do this this well 7

Current bias: neutrinos have eV scale masses

But we have NOT looked everywhere...

This is best near threshold at BESIII and CLEO-c

0970401-003 Unique Opportunity to 2500 BR = 1% τ→ενν look for exotic bosons, dL = 0.25/fb2000 eg familon 1200 S1500 Luacks 1000 ⁸⁰⁰ 600 Electron signature is smeared 1000 out at higher energies - Michel 500 Parameter measurements could miss this 200 400 0 600 800 1000 **Electron Energy (MeV)**

PDG: BR($\tau \rightarrow eX$) < 0.2% (ARGUS)

Radiative Leptonic Decays

 $\tau \rightarrow I \nu \nu \gamma$ is "easy" – measured to 10%

No ISR/FSR at threshold Less boost at threshold: Greater lepton γ separation Access to back to back lepton γ

.25 /fb at threshold should allow a 1% measurement of BR and access to "hard" kinematic regime

Tau Atoms

M. Perl Tau92 Proceedings

- $\tau^+\tau^-$ should form 3S_1 bound states in e^+e^- collisions
 - Bohr radius 0.0003 Angstrom $\approx a_0(H)/1000$!
 - Binding energy = -23.7 keV/n^2
- Tau atom decay via:
 - τ weak decay $\Gamma \approx 10^{-3}$ eV
 - $\tau\tau$ annihilation S states: ee , $\mu\mu$, hadrons (10⁻³ eV), 3 γ (10⁻⁵ eV) 2 γ is not from ³s₁ states
- Peak production cross section huge = 1 millibarn
- Very narrow width = 0.006 eV
- $\Delta E \text{ beam 1 MeV} \Rightarrow \sigma_{\text{effective}}(ee \rightarrow \tau\tau \text{ atom}) = 0.1 \text{ nb}$
- If $L=10^{33}$ cm⁻²s⁻¹, 1 tau atom every 2 minutes

Tau Atoms 2

- Binding Energy on the order of keV no hope of seeing EM transition γ between levels
- Best hope is to look for annihilation signal into μμ vs ee:
 - Signal sits on top of large µ pair and larger Bhabha background
 - Run at threshold and compare N(µµ)/N(ee) to off threshold running
 - L=0.25 fb-1 suffices to see µµ signal
 - Investigate 3γ annihilation might get lucky
- Only CLEO-c and BESIII can hope to see tau
- Is there any real physics here? Could be...

High Stats Measurements

- Neutrinoless decays
- Precision Branching Fractions
- Lorentz Structure
- Hadronic structure
- Rho mass
- CP Violation
- Neutrino Mass

Neutrinoless Decays

- Current limits on neutrinoless decays are at the $BR < 10^{-6} 10^{-5}$ level
- In some models $\tau \rightarrow \mu \gamma$ is more sensitive to new physics that $\mu \rightarrow e \gamma$ due to τ mass
- It is likely B factory limits will not decrease fast
- Two body neutrinoless decays should be trivial at CLEO-c and BESIII
- Sensitive to $e/\mu/\pi/K$ discrimination near 1 GeV
- CLEO-c limits conceivable at 10⁻⁶
- BESIII limits conceivable at 10⁻⁷

Precision Branching Fractions

1

- BR($\tau \rightarrow l\nu\nu$) has applications to lepton universality and R_{τ} measurements $R_{\tau} = \frac{\Gamma - \Gamma(\tau \rightarrow e\nu\nu) - \Gamma(\tau \rightarrow \mu\nu\nu)}{\Gamma}$
- Absolute BR($\tau \rightarrow I\nu\nu$, $h\nu$) currently known to $\sigma \approx 1\%$, mostly lumi, τ cross section systematics limited
- With 10⁷ tau pairs, BESIII could match this in a global 2 track + missing energy fit

• Use threshold $\tau \rightarrow Ivv$, hv to verify trigger knowledge

mode	evv	μνν	Πν	ρν	Kν	K*ν
BR %	18	17	11	25	.7	.5
σ /BR %	.3	.4	Ι	.6	4	7

Precision BR 2

The 1 vs 1 sample has great promise for **relative** Branching Ratios

- Look for 1 vs 1, with both tracks E< 0.65 Ebeam
- Even with NO e or μ id, the almost monochromatic π/K will stick out
- Use electron id to suppress (uds) backgrounds
- π^0 reconstruction should easily show a ρ
- 5/fb at ψ '' => errors much less than 1% for hv, $h\pi^0 v$ relative to lvv
- With some K/π id + kinematic constraints, this should leverage into better known πν,ρν,Κν, K*ν

The Lorentz Structure is studied via the Michel Parameters ρ , η , ξ , δ in $\tau \rightarrow e/\mu v v$

$$\frac{d\Gamma}{dxdcos\theta} \propto x^2 \left[h_0 + \rho h_\rho + \eta \frac{m_l}{m_\tau} + P_\tau \xi \cos\theta (h_\xi + \delta h_\delta) \right] \qquad \eta \text{ multiple}$$

where $h_{\eta} = h_{\eta}(x)$, and $x = E_{I}/E_{max}$

ies s ratio

	SM value	µ→evv	τ→Iνν
ρ	3/4	±.0026	±.01
η	0	±.013	±.097(μ)
ξ	I	±.008	±.04
δ	3/4	±.004	±.02

- CLEO2 dominates Michel Parameter measurements:
 - Used $\tau \rightarrow \rho \nu \nu s \tau \rightarrow l \nu \nu \rho$ decay as a spin analyzer
 - Dominant errors are stat => B factories will do much better
- τ pair spin correlations are different at lower energy => chance for an interesting confrontation
- ISR/FSR dilutes spin correlations interesting possibilities for threshold running

Lorentz Structure 3

η is of particular interest at CLEO-c and BES: effect is largest for slowest μ's

Look for 1 vs (monochromatic) $\boldsymbol{\pi}$

CLEO-c sensitive to $\eta \approx 0.05$ (currently $\sigma_{\eta} \approx 0.1$)

BESIII will be even more sensitive

Hadronic structure

- For exclusive channels, BESIII/CLEO-c offer a large sample with statistics comparable to LEP/CLEO but smaller than BaBar/Belle
- Kinematic separation with monochromaticity for narrow resonances could be an important factor
- However good π/K separation is key to sorting out wider resonance/interference structure
- PID also key to using the τ as a QCD laboratory for inclusive hadronic studies

- QCD coupling α_s derived from τ is more precise (and consistent) with that from the Z - $\tau \rightarrow [X]_{s=1} \nu$ key to getting strange quark mass

M. Davier hep-ex/0312064

Rho Mass

- The ρ is where e^+e^- confronts the τ see μ g-2 value
- Both the BR and line shape are problematic
 M. Davier hep-ex/0312065
- LEP: high purity, not so good at high $\pi\pi^0$ mass
- CLEO: very good at high $\pi\pi^0$ mass
- BESIII/CLEO-c: chance for low background and very good line shape
- 10⁷ τ will easily surpass LEP/CLEO sample sizes and bring important input to g-2

- Triple product $(P_{beam}, P_{l_1}, P_{l_2})$ in $\tau \rightarrow l_1 vv vs$ $\tau \rightarrow l_2 vv$ probes CP in τ **production** – B Factories will do this very well
- CP in τ decay best probed by spin correlations in hadronic decays
 - High energy: longitudinal correlations
 - Low energy: transverse spin correlations
- CP searches at CLEO-c/BESIII probe different mechanisms than at B Factories

Neutrino Mass

- Neu mass limits come from Energy vs Mass fits to τ→5πν, 4πν
- Current limit ≈18 MeV
- Technique requires understanding MeV Scale systematics:
 - 2D correlated detector resolution (E vs M error)
 - Mass scale
 - underlying hadronic physics ("Spectral Function")
- ISR/FSR washes out usefulness of 1/2 of events

1160398-001

Neutrino Mass 2

- The 2D technique does not appear to be nicely behaved as a statistical estimator

 it is more a probe of lucky events near the kinematically allowed edges – these are sensitive to detector modeling
- At low energies, the allowed region sharpens from a triangle to a line ⇒ loose the supposed gain of the 2d method - this might be a good thing.
- At threshold No ISR/FSR to wash out weight of events – effective factor of 2 gain in lumi
- B Factory error ellipses are same scale as 18 MeV and 0 MeV contour differences – diminishing returns?

Allowed regions for 0, 100 MeV nu

Very rough comparison of samples between CLEO98 (30 MeV limit) and 0.25/fb at CLEO-c tau threshold

mode	BR	CLEO 98	<cleo-c></cleo-c>			
3π2π ⁰	0.5%	200 events	100 events			
5π	.1%	250 events	50 events			
ККπ	.2%	Not used	65 events			
The above assumes e/mu/pi/rho tags at CLEO-c + no charm background + perfect PID						

High energy colliders cut very hard to get pure samples Even a small threshold run can give a data sample comparable to current world's largest samples

Again - an important opportunity for unique work at CLEO-c and especially BESIII

- At BESIII/CLEO-c, expect smaller error ellipses – more discrimination near endpoint
- Running at 3.67 GeV (above τ threshold, below charm), with ≈10/fb could possibly give U.L. in the MeV region
- This likely represents the limit of this technique

- BESIII/CLEO-c will play an important role in τ physics – no matter what BaBar/Belle do
- There are unique opportunities near threshold using the lack of ISR/FSR, and unique τ decay kinematics
- CLEO-c is not guaranteed to do any tau only running – BESIII should not miss this opportunity.

Recipe for BESIII Tau Success

- 1. Get a sufficient sample below tau threshold to get (uds) MC right
- 2. A 50 /pb scan near threshold to get the tau mass – a larger sample will allow a detailed inspection of the turn-on curve
- 3. 0.25 /fb at tau threshold for the threshold measurements, plus 0.25/fb 3 MeV below to get normalization for tau atom search
- 4. Several /fb at 3.67 GeV to for high stats measurements – use to make sure you know what you are doing above charm
- 5. > 10 /fb at 3.67 GeV for neutrino mass
- 6. All the data you can get above charm threshold
- 7. Goto step 1