

How charm data may help for φ₃ measurement at B-factories Alex Bondar (BINP, Novosibirsk) BELLE collaboration

- 1. Short description of the method
- 2. First results from Belle
- 3. Model uncertainties of the method
- 4. Model-independent approach using CP-tagged data from Charm Factories
- 5. Conclusion

BESIII/CLEO-c Workshop

A. Bondar

KEKB & BELLE

 ϕ_3 with B \rightarrow D⁰K Dalitz analysis

- Coupling strength at decay vertex : $G_F V_{ij}$
 - universal Fermi weak coupling : G_F
 - $-V_{ij}$: quark-mixing matrix elements
- CKM matrix :
 - unitarity : $V_{ji} * V_{jk} = \delta_{ik}$
 - explicit parametrization (Wolfenstein)
 - complex phase leads to different $b \rightarrow u$ and $t \rightarrow d$ amplitudes for quarks and anti-quarks.

A. Bondar

The B Unitarity Triangle

- $b \rightarrow u(\overline{cs}) \& b \rightarrow c(\overline{us})$ interference : $B^- \rightarrow DK^-$ decays
 - GLW method : use CP eigenstates of D^0 meson (D_{CP})
 - ADS method : use $K^+\pi^-$ mode as common final states of D^0 and D^0
- $b \rightarrow u(\overline{c}d) \& b \rightarrow c(\overline{u}d)$ interference ($\& B^0 \overline{B}^0$ Mixing) - $\sin(2\phi_1 + \phi_3)$ measurement via $B^0 \rightarrow D^{(*)+}\pi^-$
- Dalitz analysis of B⁻ → DK⁻ (D → K_S π⁻ π⁺) decays to get φ₃ directly. (A.Giri, et. Al hep-ph/0303187) Independently by Belle (unpublished) <u>http://belle.kek.jp/secured/dcpvrare/meetings/binp/020926/bondar.pdf</u> First Belle measurement hep-ex/0308043

BESIII/CLEO-c Workshop

A. Bondar

 $B^+ \rightarrow D^0 K^+$ decay

If both D⁰ and D⁰ decay into the same final states $B^+ \rightarrow D^0 K^+$ and $B^+ \rightarrow \overline{D}^0 K^+$ amplitudes interfere. Mixed state is produced: $\left| \widetilde{D}^0 \right\rangle = \left| \overline{D}^0 \right\rangle + a e^{i\theta} \left| D^0 \right\rangle$ Total phase $\theta = \phi_3 + \delta$

$$B^+ \rightarrow D^0 K^+$$
 decay

$$\begin{aligned} \left| \widetilde{D}^{0} \right\rangle &= \left| \overline{D}^{0} \right\rangle + a e^{i\theta} \left| D^{0} \right\rangle \\ a &= \frac{\left| V_{ub} V_{cs}^{*} \right|}{\left| V_{cb} V_{us}^{*} \right|} \times \frac{a_{2}}{a_{1}} \approx 0.09/0.22 \times 0.35 \approx 1/8 \qquad \theta = \delta + \varphi_{3} \\ a &= \sqrt{\frac{Br(B^{+} \to D^{0}K^{+})}{Br(B^{+} \to \overline{D}^{0}K^{+})}} \quad \text{in the case of no interference between } D^{0} \text{ and } \overline{D}^{0} \end{aligned}$$

Color suppression factor $a_2/a_1 = 0.35$ is estimated from the ratio of $B^0 \rightarrow D^0 K^0$ and $B^+ \rightarrow D^0 K^+$ branching fractions (measured by Belle)

Use 3 body D^{θ} decay, analyze Dalitz plot (fit relative amplitude *a* and phase θ)

 $\left. \begin{array}{l} \theta = \delta + \varphi_3 & \text{for } B^+ \\ \theta = \delta - \varphi_3 & \text{for } B^- \end{array} \right\} \text{ can obtain both } \varphi_3 \text{ and } \delta \text{ separately}$

- Use D^0 3-body final state : $B^+ \rightarrow D^0(\overline{D}{}^0)K^+ \rightarrow K_S \pi^+ \pi^- K^+$
- **3-body decay is parameterized by 2-variables:** $m_{+^2}(K_s\pi^+) \& m_{-^2}(K_s\pi^-)$ $M_{+}(B^+ \to DK^+) = f(m_{+^2}^2, m_{-^2}^2) + ae^{i\theta_+} f(m_{-^2}^2, m_{+^2}^2) = f(m_{\pm^2}^2, m_{\pm^2}^2) : \overline{D}^0(D^0) \text{ decay amplitudes}$ $M_{-}(B^- \to DK^-) = f(m_{-^2}^2, m_{+^2}^2) + ae^{i\theta_-} f(m_{+^2}^2, m_{-^2}^2) = \theta_{+^2} = \delta \pm \phi_3$
- Determine each *D*⁰ decay amplitudes by fitting relative amplitudes and relative phases.

 $D(2010)^{*+} \rightarrow D^0 \pi^+$: 57800 events @ 78 fb⁻¹

D(2010) + D n = .57000		0	4000 E	
Resonance	Amplitude	Phase, (deg)	3000	000
$K^{*}(892)^{-}\pi^{+}$	1.706 ± 0.015	138.0 ± 0.9	2000	400
$K_s \rho^0$	1.0 (fixed)	0 (fixed)	1000	200
$K^{*}(892)^{+}\pi^{-}$	$(13.6 \pm 0.8) \times 10^{-2}$	330 ± 3	0 E E	
$K_s \omega$	$(32.8 \pm 1.8) \times 10^{-3}$	114 ± 3	$M^2_{Ks\pi+2} GeV^2$	$M^2_{\pi+\pi^{-2}} GeV^2$
$K_s f_0(980)$	0.385 ± 0.011	214.2 ± 2.3		
$K_s f_0(1370)$	0.49 ± 0.04	311 ± 6		a 3
$K_s f_2(1270)$	1.66 ± 0.05	341.3 ± 2.3	1200	Cer
$K_0^*(1430)^-\pi^+$	2.09 ± 0.05	353.6 ± 1.8	1000	2.5
$K_2^*(1430)^-\pi^+$	1.20 ± 0.05	316.9 ± 2.1	800	≥ 2
$K^*(1680)^-\pi^+$	1.62 ± 0.24	84 ± 10		/ 5
$K_s \sigma_1 \ (M_{\sigma_1} = 535 \pm 6 \text{ MeV}, \ \Gamma_{\sigma_1} = 460 \pm 15 \text{ MeV})$	1.66 ± 0.09	217.3 ± 1.4		
$K_s \sigma_2 \ (M_{\sigma_2} = 1063 \pm 7 \text{ MeV}, \ \Gamma_{\sigma_2} = 101 \pm 12 \text{ MeV})$	0.31 ± 0.04	257 ± 11		
non-resonant	6.51 ± 0.22	149.0 ± 1.6	200	0.5
			0 0.5 1 1.5 2 2.5 3	0.5 1 1.5 2 2.5
			$M^2_{Ksm^2}$ GeV ²	$M^2_{Ks\pi+}, GeV^2$

January 13, 2004

 ϕ_3 with B \rightarrow D⁰K Dalitz analysis

Effect of D^0 - \overline{D}^0 interference

A. Bondar

Statistical accuracy (MC study)

Accuracy depends on the value of a. Use pessimistic value a = 0.125.

Generate $\tilde{D^0}$ Dalitz plot for $0^0 < \theta < 360^0$. Fit Dalitz plot with free *a* and θ , extract σ_{θ} .

$$\phi_3 = \frac{\theta^+ - \theta^-}{2}$$

If $\sigma_{\theta} = Const$

$$\sigma_{\phi_3} = \sqrt{2} \cdot \frac{\sigma_\theta}{\sqrt{2}} = \sigma_\theta$$

 $3.0^{\circ} < \sigma_{\phi_3} < 3.7^{\circ}$ for 10^4 detected B^{\pm} decays

Statistical error of phase θ for 10^4 detected decays.

A. Bondar

$B^+ \rightarrow D^0 K^+$ signal with 142 fb⁻¹

A. Bondar

$\mathbb{Z} B^+ \to D^0 K^+$, $D^0 \to K_s \pi^+ \pi^-$ Dalitz plot

Backgrounds

- $q\overline{q}$ combinatorics (14%)
 - Fraction (together with D^0): from ΔE distribution
 - Dalitz plot: from continuum data (off-Y(4S) or on-resonance)
- D⁰ from $q\overline{q}$ (3%)
 - Fraction (relative to combinatorial): from $q\bar{q}$ M_D distribution
 - Dalitz plot: equal mixture of D^0 and $\overline{D}{}^0$
- B decays (2% neutral, 4% charged)
 - Fraction and Dalitz plot: from generic MC
- "Wrong" particles in D⁰ decay (0.5%)
 - Fraction and Dalitz plot: from $B \rightarrow D^0 K MC$
- $B \rightarrow D^0 \pi$ with K/ π misidentification (0.5%)
 - Fraction: from signal ΔE distribution
 - Dalitz plot: D⁰
- Flavour tagging K from combinatorics (<0.4% at 95 C.L. from MC)

Extracting ϕ_3

• Fit D^0 Dalitz plots from $B^+ \rightarrow D^0 K^+$ and $B^- \rightarrow D^0 K^$ processes simultaneously with three $(a, \phi_3 \text{ and } \delta)$ free

• Relative amplitude $a = 0.33 \pm 0.10 \pm 0.03 \pm 0.03$

0.15 < a < 0.50

Model uncertainty (MC study)

Generate $\tilde{D^0}$ Dalitz plot for $0^0 < \theta < 360^0$.

Fit Dalitz plot with different model (free a and θ), $\Delta \theta = \theta_{fit} - \theta$.

Fit model	$(\Delta \phi_3)_{max}, deg$
$K^*(892), \rho, \text{nonres}$	29.3
$K^{*}(892),\rho,{\rm DCS}\ K^{*}(892),f^{0}(980),{\rm nonres}$	9.9
Meson form factors ${\cal F}_r={\cal F}_D=1$	3.1
Width dependence $\Gamma(q^2)=Const$	4.7

Our estimation of model uncertainty is 10° (all wide resonances approximated by the flat term).

Complex D^0 decay amplitude f consists of absolute value |f| and phase ϕ .

$$f = |f(m_+, m_-)|e^{i\phi(m_+, m_-)}$$

For $D^0 - \overline{D^0}$ interference from $B \to D^0 K$ decay:

$$A = |f(m_{+}, m_{-})|e^{-i\phi(m_{+}, m_{-})} + ae^{i\theta}|f(m_{-}, m_{+})|e^{-i\phi(m_{-}, m_{+})}$$

= $|f(m_{+}, m_{-})| + ae^{i\theta}|f(m_{-}, m_{+})|e^{-i(\phi(m_{-}, m_{+}) - \phi(m_{+}, m_{-}))}.$

|f| is directly measured in the experiment. Phase difference $\phi(m_-, m_+) - \phi(m_+, m_-)$ is model-dependent.

A. Bondar

Model-independent approach

Amplitude of D_{CP}^0 decay:

$$A_{CP} = \frac{f(m_{+}, m_{-}) \pm f(m_{-}, m_{+})}{\sqrt{2}}$$
$$= \frac{|f(m_{+}, m_{-})| \pm |f(m_{-}, m_{+})| e^{i(\phi(m_{+}, m_{-}) - \phi(m_{-}, m_{+}))}}{\sqrt{2}}$$

Phase difference can be obtained without model assumptions using D^0 and D_{CP} . CP eigenstate of D^0 can be produced by $c\tau$ -factory in decay $\psi'' \to D^0 \bar{D^0}$. CP tag is provided by another D^0 decaying to CP eigenstate (like K^+K^-).

D^0	D_{CPeven}	D_{CPodd}	$(\Delta \phi_3)_{max}$	
1000	100	100	15.2 ± 5.4	/
5000	500	500	7.0 ± 2.5	
20000	2000	2000	1.6 ± 0.6	

Prov

CP-tagged events at Charm Factories

CP properties of the D states produced in the $\Psi(3700)$ are anticorrelated. If one D decaying as CP=+1 other state is "CP-tagged" as CP=-1

32,000 CP-tagged K⁺ π ⁻ decays are expected for one year run at CLEO-c (G.Burdman, I.Shipsey hep-ph/0310076)

Based on this number we can estimate:

8,000 K_s $\pi^+\pi^-$

6,000 $\pi^+\pi^-\pi^0$

1,500 K_SK⁺K⁻

Comparison with indirect measurements

Conclusion

- ϕ_3 can be measured in $B \to D^0 K$, $D^0 \to K_s \pi^+ \pi^-$ decay. The advantages are:
 - Do not need absulute values of branchings.
 - Sensitive to ϕ_3 itself, no discrete ambiguities for $0 < \phi_3 < \pi$.
 - Model uncertainty is $~\sim 10^\circ$
 - Model-independent approach exists Data from Charm Factory are necessary!
 - Sensitivity can be increased by using other decay modes: $B \rightarrow D^{*0}K$ with $D^{*0} \rightarrow D^0\pi^0$; $D^0 \rightarrow K_s K^+ K^-, \pi^0 \pi^+ \pi^-, 4$ -body decays.
- Expected sensitivity with 3 ab^{-1} and 10% detection efficiency:

$$- \sim 5 - 7^{\circ}$$
 for $a = 0.125$

$$- \sim 3 - 5^{\circ}$$
 for $a = 0.2$

CLEO $D^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz plot analysis

CLEO collected 5300 $D^0 \to K_s \pi^+ \pi^-$ decays with 9 fb⁻¹. [PRL **89**,251802 (2002)] D^0 amplitude is represented by a sum of 2-body decay amplitudes:

$$f = a_{K^*} e^{i\phi_{K^*}} [F_D F_{K^*} M^J BW(m_{K_s\pi^-}^2)] + a_{\rho} e^{i\phi_{\rho}} [F_D F_{\rho} M^J BW(m_{\pi^+\pi^-}^2)] + \dots$$

19 resonant components considered:

$$\begin{split} &K^{*-}\pi^{+}, \, \kappa(800)^{-}\pi^{+}, \, K^{*}(1410)^{-}\pi^{+}, \, K^{*}_{0}(1430)^{-}\pi^{+}, \, K^{*}_{2}(1430)^{-}\pi^{+}, \, K^{*}(1680)^{-}\pi^{+}, \\ &K^{*}_{3}(1780)^{-}\pi^{+}, \, K_{s}\rho, \, K_{s}\omega, \, K_{s}\rho(1450), \, K_{s}\rho(1700), \, K_{s}\sigma(500), \, K_{s}f_{0}(980), \\ &K_{s}f_{2}(1270), \, K_{s}f_{0}(1370), \, K_{s}f_{0}(1500), \, K_{s}f_{0}(1710) \\ &\text{Doubly Cabbibo-suppressed:} \, K^{*+}\pi^{-}, \, K^{*}_{0}(1430)^{+}\pi^{-} \end{split}$$

10 components found (red) + non-resonant.

Doubly Cabibbo suppressed amplitude $K^{*+}\pi^-$ observed with 5.5 σ significance.

No CPV observed. Mixing not studied.

A. Bondar

CLEO $D^0 \rightarrow K_s \pi^+ \pi^-$ data and fit

Event selection $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K_s \pi^+ \pi^-$

Belle $D^0 \rightarrow K_s \pi^+ \pi^-$ data and fit

ϕ_3 with B \rightarrow D⁰K Dalitz analysis

Close look to $D^0 \rightarrow K_s \pi^+ \pi^-$ plot projections

ϕ_3 with B \rightarrow D⁰K Dalitz analysis

CLEO/Belle fit results

				-	reli	
Resonance	CLEO fit			Our fit		
	Amplitude	Phase, deg	Br, $\%$	Amplitude	Phase, deg	
$K^{*}(892)^{-}\pi^{+}$	$1.56\pm0.03\pm0.02^{+0.15}_{-0.03}$	$150\pm2\pm2^{+2}_{-5}$	65.7 ± 1.3	1.64 ± 0.012	137.7 ± 0.7	
$K^*(892)^+\pi^-$	$(11\pm2~^{+4}_{-1}~^{+4}_{-1})\times10^{-2}$	$321 \pm 10 \pm 3 {}^{+15}_{-5}$	0.34 ± 0.13	$(14.6 \pm 0.7) \times 10^{-2}$	324.2 ± 2.3	
$K_0^*(1430)^-\pi^+$	$2.0\pm 0.1 \stackrel{+0.1}{_{-0.2}} \stackrel{+0.5}{_{-0.1}}$	$3\pm4\pm4\ ^{+7}_{-24}$	7.3 ± 0.7	1.85 ± 0.04	354.5 ± 1.6	
$K_0^*(1430)^+\pi^-$	-	-	-	0.33 ± 0.05	124 ± 8	
$K_2^*(1430)^-\pi^+$	$1.0\pm 0.1\pm 0.1~^{+0.3}_{-0.1}$	$335 \pm 7 {}^{+1}_{-4} {}^{+7}_{-24}$	1.1 ± 0.2	1.23 ± 0.03	311.8 ± 1.9	
$K_2^*(1430)^+\pi^-$	-	-	-	0.19 ± 0.03	277 ± 10	
$K^{*}(1680)^{-}\pi^{+}$	$5.6 \pm 0.3 \ ^{+0.5}_{-0.2} \pm 4.0$	$174 \pm 6 \ \substack{+10 \\ -3 \ -19} \ \substack{+13 \\ -19}$	2.2 ± 0.4	2.12 ± 0.23	72 ± 7	
$K^{*}(1680)^{+}\pi^{-}$	-	-	-	1.25 ± 0.2	112 ± 9	
$K_s \rho^0$	1.0 (fixed)	0 (fixed)	26.4 ± 0.9	1.0 (fixed)	0 (fixed)	
$K_s \omega$	$(37\pm5\pm1~^{+3}_{-8})\times10^{-3}$	$114 \pm 7 \stackrel{+6}{_{-4}} \stackrel{+2}{_{-5}}$	0.72 ± 0.18	$(33.2 \pm 1.4) \times 10^{-3}$	113.6 ± 2.4	
$K_s f_0(980)$	$0.34 \pm 0.02 \stackrel{+0.04}{_{-0.03}} \stackrel{+0.04}{_{-0.02}}$	$188 \pm 4 \stackrel{+5}{_{-3}} \stackrel{+8}{_{-6}}$	4.3 ± 0.5	0.385 ± 0.008	209.3 ± 1.8	
$K_s f_0(1370)$	$1.8\pm 0.1 \ \substack{+0.2 \\ -0.1 \ -0.6} \ \substack{+0.2 \\ -0.6}$	$85 \pm 4 {}^{+4}_{-1} {}^{+34}_{-13}$	9.9 ± 1.1	0.75 ± 0.06	320 ± 9	
$K_s f_2(1270)$	$0.7\pm0.2~^{+0.3}_{-0.1}\pm0.4$	$308 \pm 12 \ \substack{+15 \\ -25 \ -6} \ \substack{+66 \\ -6}$	0.27 ± 0.15	1.30 ± 0.06	353 ± 3	
$K_s \sigma_1$	-	-	-	1.45 ± 0.09	211.6 ± 3.6	
$K_s \sigma_2$	-	-	-	0.25 ± 0.04	253 ± 3	
non-resonant	$1.1\pm0.3~^{+0.5}_{-0.2}~^{+0.9}_{-0.7}$	$340 \pm 11 \ \substack{+30 \\ -18} \ \substack{+55 \\ -52}$	0.9 ± 0.4	5.46 ± 0.29	144.5 ± 2.4	

 $M_{\sigma_1} = 525 \pm 9$ MeV, $\Gamma_{\sigma_1} = 432 \pm 16$ MeV. $M_{\sigma_2} = 1060 \pm 3$ MeV, $\Gamma_{\sigma_2} = 99 \pm 10$ MeV.

January 13, 2004

$B^+ \rightarrow D^0 K^+$ Dalitz plot fit results (fixed *a*)

$B^+ \rightarrow D^0 K^+$ Dalitz plot and projections

January 13, 2004

ϕ_3 with B \rightarrow D⁰K Dalitz analysis

$B^- \rightarrow D^0 K^-$ Dalitz plot and projections

January 13, 2004

ϕ_3 with B \rightarrow D⁰K Dalitz analysis

A. Bondar

$\mathbb{Z} B^+ \to D^0 \pi^+$, $D^0 \to K_s \pi^+ \pi^-$ Dalitz plot

January 13, 2004

ϕ_3 with B \rightarrow D⁰K Dalitz analysis

A. Bondar

Test sample fits

 $a=0.065\pm0.020$ (~1-2% probability for a=0), however no CP asymmetry Need further investigation. Stat. fluctuation can not be excluded

Constraints on complex $D^0-\overline{D}^0$ amplitude

$B^+ \rightarrow D^0 K^+$ Dalitz plot fit results

For a, φ_3 and δ as free parameters: $a = 0.33 \pm 0.10 \quad \varphi_3 = 92^{+19}_{-17} \quad \delta = 165^{+17}_{-19}$ Two solutions: $(\varphi_3, \delta) \text{ and } (\varphi_3 + \pi, \delta + \pi)$

Toy MC study

A. Bondar

Strong phase value

Strong phase is 162° for $B \to D^0 K$

Does it agree with expectation based on factorization approach? Yes.

Hamiltonians:

$$\begin{aligned} \mathcal{H}(B^{-} \to D^{0}K^{-}) &= \frac{G_{F}}{\sqrt{2}} V_{us}^{*} V_{cb} [\bar{\mathcal{O}}_{1}C_{1}(\mu) + \bar{\mathcal{O}}_{2}C_{2}(\mu)] \\ \mathcal{H}(B^{-} \to \bar{D}^{0}K^{-}) &= \frac{G_{F}}{\sqrt{2}} V_{cs}^{*} V_{ub} [\mathcal{O}_{1}C_{1}(\mu) + \mathcal{O}_{2}C_{2}(\mu)] \end{aligned}$$

Current-current operators:

$$\bar{\mathcal{O}}_1 = (\bar{s}_{\alpha} u_{\beta})_{V-A} (\bar{c}_{\beta} b_{\alpha})_{V-A}; \ \bar{\mathcal{O}}_2 = (\bar{s}_{\alpha} u_{\alpha})_{V-A} (\bar{c}_{\beta} b_{\beta})_{V-A}$$

 $\mathcal{O}_1 = (\bar{s}_{\alpha} c_{\beta})_{V-A} (\bar{u}_{\beta} b_{\alpha})_{V-A}; \ \mathcal{O}_2 = (\bar{s}_{\alpha} c_{\alpha})_{V-A} (\bar{u}_{\beta} b_{\beta})_{V-A}$

$$\begin{array}{lll} A(B^- \to D^0 K^-) &=& < D^0 K^- \, |\mathcal{H}(B^- \to D^0 K^-)|B^- > = \, \frac{G_F}{\sqrt{2}} V^*_{us} V_{cb} \bar{M} \\ \\ A(B^- \to \bar{D^0} K^-) &=& < \bar{D^0} K^- \, |\mathcal{H}(B^- \to \bar{D^0} K^-)|B^- > = \, \frac{G_F}{\sqrt{2}} V^*_{cs} V_{ub} M \end{array}$$

$$\bar{M} = \langle K^{-}D^{0}|\bar{\mathcal{O}}_{1}C_{1}(\mu) + \bar{\mathcal{O}}_{2}C_{2}(\mu)|B^{-} \rangle$$

$$M = \langle K^{-}\bar{D}^{0}|\mathcal{O}_{1}C_{1}(\mu) + \mathcal{O}_{2}C_{2}(\mu)|B^{-} \rangle$$

A. Bondar

Strong phase value

$$\begin{split} A(B^- \to [K_s \pi^+ \pi^-]_{\bar{D^0}} K^-) &= A(B^- \to D^0 K^-) A(D^0 \to K_s \pi \pi) + A(B^- \to \bar{D^0} K^-) A(\bar{D^0} \to K_s \pi \pi) = \\ &= \frac{G_F}{\sqrt{2}} V_{cb} V_{us}^* \bar{M} A(D^0 \to K_s \pi \pi) \left[1 + \frac{V_{ub} V_{cs}^*}{V_{cb} V_{us}^*} \frac{M}{\bar{M}} \frac{A(\bar{D^0} \to K_s \pi \pi)}{A(D^0 \to K_s \pi \pi)} \right] = \\ &= \frac{G_F}{\sqrt{2}} V_{cb} V_{us}^* \bar{M} A(D^0 \to K_s \pi \pi) \left[1 + \frac{V_{ub} V_{cs}^*}{V_{cb} V_{us}^*} a e^{i\delta} \right] \end{split}$$

$$\begin{split} ae^{i\delta} &= \left. \left. \left. A(\bar{D^0} \to K_s \pi \pi) = e^{-i\phi_{CP}(D)} A(D^0 \to K_s \pi \pi) \right/ = e^{-i\phi_{CP}(D)} \frac{M}{\bar{M}} = /\text{factorization} / = \\ &= \left. e^{-i\phi_{CP}(D)} \frac{a_2 < \bar{D^0} |(\bar{c}_{\beta} u_{\beta})_{V-A}| 0 > < K^- |(\bar{s}_{\alpha} b_{\alpha})_{V-A}| B^- >}{a_2 < D^0 |(\bar{u}_{\beta} c_{\beta})_{V-A}| 0 > < K^- |(\bar{s}_{\alpha} b_{\alpha})_{V-A}| B^- > + a_1 < K^- |(\bar{s}_{\beta} u_{\beta})_{V-A}| 0 > < D^0 |(\bar{c}_{\alpha} b_{\alpha})_{V-A}| B^- > \\ \end{split}$$

For pseudoscalar D^0 :

$$<\bar{D^{0}}|(\bar{c}_{\beta}u_{\beta})_{V-A}|0> = <\bar{D^{0}}|(\mathcal{CP})^{\dagger}(\mathcal{CP})(\bar{c}_{\beta}u_{\beta})_{V-A}(\mathcal{CP})^{\dagger}(\mathcal{CP})|0> = -e^{i\phi_{OP}(D)} < D^{0}|(\bar{u}_{\beta}c_{\beta})_{V-A}|0>$$

$$\Rightarrow ae^{i\delta} = -a_{2}/(fa_{1}+a_{2})$$

For vector D^{*0} :

$$<\bar{D^{0}}|(\bar{c}_{\beta}u_{\beta})_{V-A}|0> = <\bar{D^{0}}|(\mathcal{CP})^{\dagger}(\mathcal{CP})(\bar{c}_{\beta}u_{\beta})_{V-A}(\mathcal{CP})^{\dagger}(\mathcal{CP})|0> = +e^{i\phi_{CP}(D)} < D^{0}|(\bar{u}_{\beta}c_{\beta})_{V-A}|0>$$

$$\Rightarrow ae^{i\delta} = +a_{2}/(fa_{1}+a_{2})$$

where

$$f = \frac{\langle K^{-} | (\bar{s}_{\beta} u_{\beta})_{V-A} | 0 \rangle \langle D^{0} | (\bar{c}_{\alpha} b_{\alpha})_{V-A} | B^{-} \rangle}{\langle D^{0} | (\bar{u}_{\beta} c_{\beta})_{V-A} | 0 \rangle \langle K^{-} | (\bar{s}_{\alpha} b_{\alpha})_{V-A} | B^{-} \rangle}$$

is real and positive in factorization.

Strong phase $\delta = \pi$ for $B \to D^0 K$ and $\delta = 0$ for $B \to D^{*0} K$ in factorization approach. [R. Fleisher, hep-ph/0301256, hep-ph/0304027].