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Precision Lattice QCD ?

BESIII/CLEO-c promise high precision measurements of

�

meson decay constants, form factors, etc. — typically 2%
accuracy.

The impact on/from lattice QCD is

provide calibration for lattice calculation of those
quantities.

give precise determination of some CKM matrix
elements, provided that lattice calculation is available
with comparable accuracy.

High precision lattice QCD means a few % accuracy. The
CLEO-c report assumed 1%.
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An example

Leptonic decay:

� � � � �� ����� 	 
 ���
 � � �� ��
assuming the CKM unitarity� determination of

� � : 2.3%.� calibration of the lattice calculation

relying on the lattice calculation ( � 1%)� determination of

�� 
 � � : 2.3%.

Model independent lattice calculation is as important as the
precise experiments.
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Other examples

exp + lattice � CKM elements

leptonic decay constants:

��� � � � ��

semileptonic form factors:

� � � �� , � ��
exp + lattice � deeper understanting of QCD

quarkonium spectrum

glueballs, hybrids, other exotics ( � Morningstar)

I will mainly consider the first class.
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Specific questions (to myself)

Is the 1% (or a few %) accuracy really achievable in the
next several years?

It must include the effect of dynamical quarks (up, down,
and strange). Is it feasible?

What is needed to achieve this goal?

To consider these questions, let us look back what happened
in the past 10 years.
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Plan of the talk

1. Improvements in lattice QCD
– Symanzik’s improvement
– HQET/NRQCD
– renormalized perturbation theory

2. Unquenching
– why so hard?
– chiral extrapolation
– fermion actions

3. Future — Is the 1% feasible?
– machines
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Improvements in lattice QCD

– Introduction

– Symanzik’s improvement

– HQET/NRQCD or conventional

– renormalized perturbation theory
(or non-perturbation matching)
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Lattice QCD = first principles calculation

A regularization of QCD:

lattice spacing �

��� � � �

�	� � � � 
 � ��
 ��� ��� �

� � � � ��� �

Numerical simulation is
possible.
path integral � Monte Carlo

It gives a nonperturbative
formulation of QCD.

� Dimensional regulariza-
tion is defined through per-
turbation theory.

prediction of LQCD = prediction of QCD
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Ideally ...

To reproduce the real world,
one needs

unquenched,

��� = 2+1.

�

= 5 fm.

� = 0.02 fm;
or � � � = 10 GeV.

�	� � = several MeV,

� � = 100 MeV.

statistics � 10K.

Empirial law : the computa-
tional demand scales as

For this example, we need

TFlops year

Theoretical/algorithmic
improvements are crucial.
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Role of effective theories

It is hard to describe the physics at different energy scales
on a single lattice.

� � ��� � �
 ��� � � �	�

Lattice QCD deals with the physics at the


 � � � � � 	 , leaving
the others for effective theories.

� � : Weak effective Hamiltonian (4-fermion interactions)

� � , �
 : Heavy Quark Effective Theory (HQET)

�	� : Chiral Perturbation Theory (ChPT)

� � � : Symanzik’s effective theory (discretization error)
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Symanzik’s effective theory

How the discretization error looks like:

����� � ��� �� � � � �
	

�� means “give the same on-shell amplitude.”�� � � is the continuum QCD lagrangian.

Discretization error is described by local operators

� 	 :

�
	 � � �� 
 � � �
� �� 	 � �

� � �

Theoretical basis to construct the improved actions.
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Improved actions

Order counting assuming

��� �� � 400 MeV:

� (fm) 0.2 0.1 0.05

� � � (GeV) 1 2 4


 � � �� �� 	

40% 20% 10%


 � � � �� �� 	 � 	

16% 4% 1%


 � � � �� �� 	 � 	

6% 1% � 1%


 � � � �� �� 	 � 	

3% � 1% � 1%

To achieve the 1% accuracy,


 � � 	-improved action + extrapolation in � �


 � � � 	-improved action at � = 0.1 fm.
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HQET

Heavy quark is static (non-relativistic) in the heavy-light
(heavy-heavy) meson. Dynamical degrees of freedom are

� 
 � �� �� 	

, which we treat non-perturbatively on the lattice.

�� � � � � �
�

�

�
� ��

�
� � �

�

� � � an expansion in

�� �� � �� .

HQET: Eichten et al. (1990)

NRQCD: Lepage et al. (1992)

Fermilab action: El-Khadra, Kronfeld, Mackenzie (1997)
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HQET order counting

Assuming

�� �� � 400 MeV:

�� � � �

(GeV) 4.5 1.5


 � �� �� � �� 	

9% 27%


 � � �� �� � �� 	 � 	

1% 7%


 � � �� �� � �� 	 � 	 � 1% 2%


 � � �� �� � �� 	 � 	 � 1% � 1%

To achieve the 1% accuracy,


 � �� �� � �� 	

or

 � � �� �� � �� 	 � 	

action for

�

quark


 � � �� �� � �� 	 � 	
action for � quark
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Without HQET

It is also possible to use the conventional fermion action as
far as � � � �

. For �
 = 1.5 GeV,

� (fm) 0.1 0.05 0.03 0.02

� � � (GeV) 2 4 6.7 10


 � � �
 	

75% 38% 22% 15%


 � � � �
 	 � 	

56% 14% 5% 2%


 � � � �
 	 � 	

42% 5% 1% � 1%

To achieve the 1% accuracy,


 � � 	-improved action at � 0.03 fm + extrapolation in � �.


 � � � 	-improved action at � � 0.03 fm.
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Example: Continuum extrapolation of �

Juttner, Rolf, PLB560 (2003) 59.

quenched approximation


 � � 	-improved action

� � 0.09–0.05 fm

Extrapolation in � �:

� ��� � � � � � � 	 �� �
�

(4% error) using

� � as an in-
put for the lattice scale.
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Extrapolation to the

�

quark

Rolf et al., hep-lat/0309072

Continuum extrapolation at
several �� ,

Then, another extrapolation
(or interpolation) in

� � � � .

Better controled with a com-
bination with HQET.
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Perturbative matching

Matching of continuum and lattice operators

� � � �� 	 � � �� � 	 � ��� � � � 	
In most cases,

� �� � 	 is known only at one-loop.

Renormalized lattice perturbation theory
Lepage, Mackenzie (1993),

� � � � � �

� � � � �
�

�
� � � poor convergence

� � � � � ��� ��� 	 	 � �

 � � �� ��� 	 	 �

� � � much better

renormalized coupling
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Perturbative error

Coupling constant is evaluated at a typical scale � � � � � �.

� (fm) 0.2 0.1 0.05

� � � (GeV) 1 2 4

� � � � � � 	 0.26 0.22 0.18


 � � � 	 26% 22% 18%


 � � �� 	 7% 5% 3%


 � � ��
	

2% 1% � 1%

To achieve the 1% accuracy,

two-loop calculation at � 0.1 fm; need automated
perturbative calculation.
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Non-perturbative matching

Or, one may prefer some non-perturbative methods to
eliminate the perturbative error.

Heitger, Sommer, hep-lat/0310035.

Matching the relativistic lattice action and HQET for

� �� �

. It is possible if the entire lattice volume is small

�
� � 0.2 fm.

Recursively match the HQET in larger volumes

��� � �� �
�

until

�� becomes physical volume 2 fm.

Both the perturbative and non-perturbative avenues are to
be pursued.
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Unquenching

– why so hard?

– chiral extrapolation
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Quenched approximation

An “approximation” to neglect the fermion determinant in the
Feynman path integral,

� � � � �� � � � � �� � �	�

due to its huge computational demand.

Most lattice calculations ( 2000) were within the
quenched approximation.

Its uncertainty is out of control. The only possoble
solution is to put

� � � back.
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Why so hard?

Monte Carlo simulation has to deal with

� � � � �� �� � � �� � �	� � � � �� � � �� � � � �	� � � � � � � � ��� � �

� � � � � �� � �� � � � 	 is the fermion matrix;
�

is a (fictitious)
pseudo-fermion field.

The effective action becomes non-local

� � � � 	 � � � ;
local updation is difficult.

Matrix inversion

� � 	 � � is time-consuming especially
for light quarks.

Simulation of light dynamical quarks is very hard: � � � � �� .
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How small sea quark masses needed?

QCD with very small quark masses is described by Chiral
Perturbation Theory (ChPT)

The chiral extrapolation of lattice data must be
consistent with ChPT near � � � �

.

Test whether the observed quark mass dependence is
consistent with the ChPT formula (especially, the chiral
log).

ChPT

Lattice simulation

� �� �� �
500 MeV

	 �

?0
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Test for the pion decay constant

Full ChPT

��� �
� � � �

���
	 
 � � �
� 
 � �

�
�

	 �� 
 � � �
�

	 �� � 
 � �


 � � �

� �� �

�� � � � �

— chiral log with a known coefficient

Quenched ChPT

��� �
� � � � 
 � �

�
	 ����

— no quenched chiral log

JLQCD (2002): a high statistics
test with the


 � � 	 -improved Wil-
son fermion.
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Possible interpretation

Lattice data lie beyond the reach of ChPT.

ChPT

Lattice simulation
� �� �� �

500 MeV

	 �
?0

Need much smaller sea quark masses, probably
corresponding to � � � � 300 MeV.

Otherwise, the chiral extrapolation introduces significant
uncertainty.
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Impact on physical quantities

decay constant

�
�
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unquenched lattice data            
quadratic

Possible fit forms:

quadratic fit (no chiral
log)

chiral log (with the known
coefficient) plus
quadratic
curvature cancels in the data region.

One-loop ChPT formula
below ( = 300 MeV and

500 MeV are shown.)

Uncertainty of order 10% in the chiral limit.
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Heavy-light meson decay constant

ChPT for the heavy-light de-
cay constant (

�� = 2)
Grinstein et al. (1992)

���
� �� �
�

� � �
	


 � � � 	�
 ��� �� � ��� �� �

� analytic terms

�� � � � �� ��� � �� �

in the heavy quark mass limit.

� : � � ��� coupling

 ! "$# %& '( ) '* +-, . /0 132 45 6 7 )

JLQCD (2003)
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Significant uncertainty depending on
the form of chiral extrapolation.
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Chiral symmetry on the lattice

The problem of chiral extrapolation may be related to the
problem of chiral symmetry on the lattice.

Wilson-type fermions:
Add a Wilson term

� � ��� � � �

to the action.
A conventional choice in the quenched calculations.
Chiral symmetry is explicitly broken; massless limit is
not determined by any symmetry.� The computational time

� � � � � � � ��
	�

fluctuates,
or even diverges, configuration by configuration.
Lightest available sea quark mass is � � �

� �

.
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Staggered fermions:
Contains 4 flavors (4 tastes in modern terminology) of
quarks; Chiral U(1) remains out of SU(4).
Complicated flavor (taste) structure: 15 pions (1 is
Nambu-Goldstone of U(1); others are not), 64 protons
etc.
Take

�� � � 	 � � �

per flavor.� Effective action is non-local; inconsistent as a
lattice field theory.
Effective lattice spacing is � �

larger.
Numerically so cheap. Lightest available sea quark
mass is � � �

� �

.
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Realistic staggered simulations

HPQCD-UKQCD-MILC-Fermilab collaboration (2003)

2+1 flavor ( �,

�

and �)


 � � � 	-improved
staggered fermion

�� �
� � � �

� �
� � �

� �

chiral extrapolation is done

with the data below ���
��

.

lattice spacing 1/8 fm
and 1/11 fm.

decay constant

fπ

fK

mval

u,d/ms

0.50.40.30.20.1

0.13

0.12

0.11

0.1

0.09
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First results

quenched versus unquenched (hep-lat/0304004).

fπ

fK

3MΞ −MN

2MBs
−MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

Very impressive agreement with experiments.
Promising also for

�

and

�

physics.
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Other choices

� The best available fermion formulation is the
Ginsparg-Wilson fermions (domain-wall or overlap).

An exact chiral symmetry on the lattice without
introducing fictitious tastes.
Tested on the quenched lattices. Simulations with
very light quark masses are possible.
The unquenched simulation is extremely demanding
(a factor � 10–100 over the Wilson-type).
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Future

– machines

– perspectives
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Machine

Moore’s law: The computer speed becomes � 10 in 5 years.
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Machines available for lattice QCD

Not a complete list:

SR8000 (KEK): 1.2 TFlops since 2000.

QCDSP (Columbia + RIKEN-BNL): 1.1 TFlops (total)
since 1998.

� QCDOC: 5–10 TFlops in 2004 @ Columbia,
RIKEN-BNL, Edinburgh.

� apeNEXT: more than 5 TFlops in 2004 (?) @ INFN,
DESY, ...

� many PC clusters @ many places

In 2005–2010, several tens of TFlops will be available
for lattice calculations.
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Perspectives (1)

I don’t see any fundamental problems to achieve the goal,
i.e. the 1% accuracy for charm physics.


 � � � 	-improved action at � � 0.1 fm.


 � � �� �� � �� 	 � 	

action for � quark. (Without HQET, we
need the


 � � � 	-improved action at � � 0.03 fm.)

two-loop matching at � 0.1 fm.

All these iterms are within reach. Actually, they are on the
program of the HPQCD-UKQCD-MILC-Fermilab group.

This argument is based on an order counting. Scaling test
will be needed to convince ourselves.
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Perspectives (2)

Computationally most demanding item is the

dynamical fermion at � � �
� � �

� 


.

At present (with


 � � 	

TFlops machines), this is only feasible
with the (improved) staggered fermion. Other fermion
formulations will need at least � 10 more computer time =
five more years to follow.

Therefore,

short–mid term: More test of the improved staggered
fermion (scaling, taste breaking, etc.)

mid–logn term: Need much faster algorithms for other
fermion formulations (especially the Gisparg-Wilson
fermions)
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Perspectives (3)

Then, as stated in the CLEO-c report, the impact of the
charm factories is

To determine the CKM elements

�� 
 �
�

,
�� 
 � � with a few %

accuracy.

To give calibration data for lattice QCD calculation, and
thus to help the

�

physics program, i.e. determination of��
� � �

,

�� � � � , �� � � � , and other form factors.

An integral part of the flavor physics.
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