Opportunities and Challenges in Hadronic D Decay Measurements

Rich set of phenomena in hadronic D decays

Significant theoretical challenges

Cornucopia of measurements to come

Powerful detectors with good kinematic resolutions, PID

Related talks in this Workshop:

Theoretical Challenges in Charm Physics Precision Charm Experiment and Precision LQCD Charm Effects in phi_3 Measurements Charm Baryons DDbar mixing CPV and Rare D Decays Theory DDbar mixing CPV and Rare D Decays Experiment Ikaros Bigi - Th Shoji Hashimoto - Th Alex Bondar John Yelton Ikaros Bigi - Th David Asner

This Talk: Overview - Absolute BR Measurements

Jim Alexander - Joint Workshop on Charm Physics

Why measure the D hadronic decay modes?

- 1. It is useful engineering:
 - Fix absolute scale of heavy quark decay rates.
 - Affects CKM measurements
 - Resolve charm counting issues in B decay
 - Understand two-body B decays
 - Measure strong phases
 - . Useful for CPV work in B decays
 - Identify targets for Acp measurements in D
 - Part of understanding what is SM behaviour
- 2. It is interesting science:
 - QCD dynamics is rich and vibrant in D system.
 - Measurements will drive theory... maybe *future* theory

14 1 11 LUU4

3. We can do it.

Jim Alexander - Joint Workshop on Charm Physics

Hadronic D⁺ Br Measurements

Hadronic D⁺ δ Br/Br

Jim Alexander - Joint Workshop on Charm Physics

Hadronic D_s Br Measurements

Hadronic $D_s \delta Br/Br$

Jim Alexander - Joint Workshop on Charm Physics

Absolute Branching Ratio: $D_s \rightarrow \phi \pi^+$

8 (%)	Err (%)	Source
3.59±0.77±0.48	25.3	CLEO
3.6±0.9	25.0	PDG

- Method: Reconstruct B-> D_s* D* by partial reconstruction twice once for D_s, once for D⁰
- Observe signal both with & without explicit D_s or D^o reconstruction

 $\cos \phi_{n'}$

Ratio measures $\mathcal{C}(D_s \rightarrow \phi \pi^+) / \mathcal{C}(D^\circ \rightarrow K^- \pi^+)$

Large backgrounds associated with partial reconstruction methods Jim Alexander - Joint Workshop on Charm Physics

北京市 1/2004

 $\cos \phi_{\mathbf{D}_{a}^{\star}}$

Experiments

Past Present Future

	Y(4S)	Fixed Target	Collider	Psi(3770)
	Babar	FOCUS	CDF	MARK III
	Belle	E791	D0	BES II
	CLEO II	E691	BTeV	CLEO-C
	CLEO III		LHCb	BES III
DATA SAMPLE	Large	Large	Huae	(Large)
		J	5	, , ,
SIGNAL/BKG	Moderate	Moderate	Low	High
PARTICLE ID?	Excellent	Excellent	()	(excellent)
FEATURES?	displ vtx	displ vtx	displ vtx	<pre>tagging;</pre>
			vtx trigg	coherence
FEATURES?	displ vtx	displ vtx	() displ vtx vtx trigg	tagging; coherenc

Jim Alexander - Joint Workshop on Charm Physics

Unique features available with charmonium initial state

1. Cleanliness Charged multiplicity ~ 2.5/D meson Neutral multiplicity ~ 1.3/D meson No other particles in event

2. Tagging DDbar state produced with no extra particles Exploit large branching ratios, Abundant kinematic constraints. Reduce combinatorics Obtain absolute BR via double/single tag CP tagging for CPV studies

3. Quantum Coherence D mixing studies: Doubly Cabibbo Suppressed mode = 0 CP Violation searches

CLEO-c, 1fb⁻¹, D⁰, D⁺ yields

TABLE 2. Production and detection rates with 1 fb⁻¹ of data for a number of D^0 and D^+ decay modes at $\sqrt{s} = 3.77$ GeV. The efficiencies $\epsilon_{\rm MC}$ and $\epsilon_{\rm S}$ are from the Monte Carlo and numerical calculations, respectively.

${\cal D}$ and Daughter Decay Modes	\mathcal{B}	Produced	$\epsilon_{ m MC}$	$\epsilon_{ m S}$	Detected
	(%)		(%)	(%)	
$D^0 \rightarrow K^- \pi^+$	3.83	442,703	41.1	42.4	182,068
$D^0 \to K^0_S \pi^0 \qquad K^0_S \to \pi^+ \pi^-$	0.72	$83,\!954$	47.4	43.7	39,790
$D^0 \rightarrow K^- \pi^+ \pi^0$	13.90	1,611,401	41.9	35.7	$675,\!201$
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	7.49	886,682	38.0	36.9	$336,\!595$
$D^0 \to K^- \pi^+ \pi^0 \pi^0$	15.00	1,133,552	31.8	23.2	360,178
		$4,\!158,\!292$			1,593,832
$D^+ \to K^- \pi^+ \pi^-$	9.00	755,816	50.0	45.1	377,747
$D^+ \to K^0_S \pi^+ \pi^0 K^0_S \to \pi^+ \pi^-$	3.33	297,891	33.0	35.8	98,263
$D^+ \to K^- \pi^+ \pi^+ \pi^0$	6.40	537,468	29.6	29.3	159,225
		$1,\!591,\!175$			635,235

$D^0 \rightarrow K^- \pi^+$ Tag mass plots

$D_s \rightarrow \phi \pi$

TABLE 3. Production and detection rates with 1 fb⁻¹ of data for a number of D_s decay modes at s = 4.028 GeV. The efficiencies $\epsilon_{\rm MC}$ and $\epsilon_{\rm S}$ are from the Monte Carlo and numerical calculations, respectively.

D and Daughter I	Decay Modes	B	Produced	$\epsilon_{\rm MC}$	$\epsilon_{\rm S}$	Detected
		(%)		(%)	(%)	
$D_s^+ \rightarrow K^- K^+ \pi^+$		4.40	54,405	40.4	36.8	21,965
$D_s^+ \rightarrow K^- K^+ \pi^+ \pi$	0	4.43	57,026	19.8	23.9	$11,\!314$
$D_s^+ \to \eta \pi^+$		1.70				
η	$\eta ightarrow \gamma \gamma$	0.67	6,738	57.1	53.3	$3,\!849$
η	$\eta \to \pi^0 \pi^0 \pi^0$	0.54	5,520	25.0	22.5	$1,\!378$
η	$\eta \longrightarrow \pi^+ \pi^- \pi^0$	0.39	4,122	43.5	35.8	1,793
$D_s^+ \to \eta \rho^+$		10.8				
η	$\gamma \to \gamma \gamma$	4.24	41,731	37.4	34.6	$15,\!612$
η	$\eta \to \pi^0 \pi^0 \pi^0$	3.46	34,066	18.4	14.6	6,260
η	$\eta \to \pi^+ \pi^- \pi^0$	2.48	25,306	26.8	23.3	6,791
$D_s^+ \to \eta' \pi^+$		3.9				
$\eta' \rightarrow \eta \pi^+ \pi^ \eta$	$\eta ightarrow \gamma \gamma$	0.68	$6,\!191$	28.2	35.8	1,743
$\eta' \rightarrow \eta \pi^+ \pi^- \eta$	$\eta \to \pi^0 \pi^0 \pi^0$	0.55	5,232	11.9	15.1	624
$\eta' \rightarrow \eta \pi^+ \pi^ \eta$	$\eta \to \pi^+ \pi^- \pi^0$	0.40	$3,\!872$	17.8	24.1	690
$\eta' \to \gamma \rho$		1.15	11,277	40.6	44.5	4,583
$D_s^+ \to \eta' \rho^+$		10.1				
$\eta' \rightarrow \eta \pi^+ \pi^- \eta$	$\eta ightarrow \gamma \gamma$	1.8	17,011	16.6	23.3	2,819
$\eta' \rightarrow \eta \pi^+ \pi^- \eta$	$\gamma \to \pi^0 \pi^0 \pi^0$	1.4	$13,\!982$	7.9	9.8	1,108
$\eta' ightarrow \eta \pi^+ \pi^- \eta$	$\eta \to \pi^+ \pi^- \pi^0$	1.0	10,417	10.4	15.7	1,086
$\eta' \to \gamma \rho$		3.0	30,072	29.1	28.9	8,747
			326,968			90,362

FIGURE 13. Reconstructed D mass M(D) for different D_s decays.

Jim Alexander - Joint Workshop on Charm Physics

Double Tagged BR

Singles yield

TABLE 13. Double tag rates and double tagging efficiencies for $D^0 \bar{D}^0$ and $D^+D^$ double tags from 1 fb⁻¹ of simulated data for each D species at 3.77 GeV. The first line for each combination of modes gives the numbers of reconstructed events. The second line gives the reconstruction efficiencies for the double tag. The third line gives estimates of the number of fake events in the signal region.

		$D^0 \bar{D}^0$		
Mode	$K^+\pi^-$	$K_S^0 \pi^0$	$K^+\pi^-\pi^0$	$K^+\pi^-\pi^+\pi^-$
$K^-\pi^+$	1,500	604	10,251	5,255
	17.7%	19.2%	16.7%	15.4%
	0	26	16	57
$K_S^0 \pi^0$		55	2,242	1,162
		17.9%	19.2%	17.9%
		7	135	94
$K^-\pi^+\pi^0$			18,289	18,571
			16.3%	15.1%
			64	327
$K^-\pi^+\pi^+\pi^-$				4,946
				14.6%
				148
		D^+D^-		
Mode	$K^+\pi^-\pi^-$	$K_S^0 \pi^- \pi^0$	$K^+\pi^-\pi^-\pi^0$	
$K^-\pi^+\pi^+$	8,446	4,344	7,135	
	25.1%	16.2%	14.6%	
	25	194	57	
$K^0_S \pi^+ \pi^0$		521	1,736	
		10.0%	9.1%	
		40	120	
$K^-\pi^+\pi^+\pi^0$			1,498	
			8.7%	
			86	

 $S_i \sim N_{D\bar{D}} B_i \epsilon_i$ Doubles yield

 $D_{ij} \sim N_{D\bar{D}} B_i B_j \varepsilon_{ij}$

Absolute Branching Ratio

 $B_i \sim \frac{D_{ij}/\epsilon_{ij}}{S_i/\epsilon_i}$

Jim Alexander - Joint Workshop on Charm Physics

Systematics of Absolute BR Measurements

For CLEO-c projections we have estimated the systematic uncertainty of the efficiency, due to track finding.

CLEO II: 0.7% achieved in clean events.

CLEO-c: evaluate systematic error by partial reconstruction: (tag event), observe K-... require Missing Mass consistent with Pion. Compare with case of reconstructed Pion. --> MC study indicated 0.2% achievable by this method.

Reach of double tag technology

TABLE 15. Total number of double tag events and statistical precisions on absolute charm branching fractions for 3 fb⁻¹ of data for each type of D meson.

Partic	cle	# of Double tags	Statistical	Systematic	Background	Total
			Error	Error	Error	Error
D^0	Κπ	53,000	0.4%	0.4%	0.06%	0.6%
D^+	Кπл	t 60,000	0.4%	0.6%	0.1%	0.7%
D_s^+ (þπ	6,000	1.3%	1.1%	0.9%	1.9%

温故知新

Translation: "Study MARK III experience before plunging ahead with CLEo-c and BES III."

Original MARK III doubletagged BR measurements were wrong by 21-24% due to unsubtracted backgrounds:

Feed-down: D->Kpipi0

Feed-across: D->KK, D->pipi ---misID--> D->Kpi ---pi0Loss--> D->Kpi

dE/dx resolution ~10%

TOF resolution 189ps

Jim Alexander - Joint Workshop on Charm Physics

BES III Particle ID

Jim Alexander - Joint Workshop on Charm Physics

MARK III CLEO-c BES III

Momentum Resolution @500 MeV/c	1.7%	0.5%	0.5%
dE/dx Resolution @min-I	10%	5-6%	6-7%
RICH K/pi Separation @ 1GeV	_	~20 0	_
TOF res	190ps	—	100ps
PID solid Angle	75%	90%	90%
Photon E res @1GEV	17%	2.1%	2.5%

Summary

Charm physics at threshold returns to center stage

Powerful, modern detectors (PID! Pi0! Hermetic!)

High luminosity accelerators: 10-100M D decays possible

Absolute charm branching ratios will be measured with unprecedented precision: 1-2%

Jim Alexander - Joint Workshop on Charm Physics