1

"Quo Vadis, Fascinum?" ("Where do you go, Charm?") -- 10 Years Later -or: On the Motivation for Continuing Studies of Charm Dynamics

> Ikaros Bigi Notre Dame du Lac

1st Prologue

`The Era of Factories'

Factory more than place where something is produced --

its products have to be consumable!

factories

e		• LEP I: Z^0 factory few $\times 10^6 Z^0$ ***
+	he av	□ CLEO/BELLE/BABAR: B fact. few × 10 ⁸ BB ***
	У	DADNE: Ф factory
e	fl av	• CLEO-c: τ -D factory few $\times 10^7$ DD
_	or	Linear collider: top (& W& H) factory

Super-factories

- DAΦNE II:
- BES III
- Super-B: up to 10¹⁰ BB
- □ Giga-Z: 10⁹ Z⁰
- JLAB: Kaon factory
- neutrino factories

2nd Prologue

Role of Charm in Evolution of SM & its Acceptance

- introduced for specific reasons & with specific properties
- facilitated for KM to come up with KM ansatz
- \bullet observation of J/ $\psi\,$ shook up community
- lead to paradigm shift in accepting quarks as real entities
- MARK III established precedent for threshold factory

$$e^{+}e^{-}$$

$$\psi'' \rightarrow D\overline{D}$$

Charm a closed chapter?

My intention

`I have come to praise C. -- not to bury it!'

charm dynamics full of challenges -- & promises triple motivation for further dedicated studies

- QCD (& `beyond'): understanding nonperturb. dynamics & establishing theoretical control over it
- B dynamics: calibrating theoret. tools for B studies
- 8 New Physics: charm transitions a novel window onto New Physics

accuracy of theoretical description of essential importance!

The Menu

- I Theory
- II Lessons on QCD
- III `Tooling up' for B Studies
- IV QCD Menu for a Super- τ -charm Factory
- V Searching for New Physics (mostly in my 2nd talk)
- VI Conclusions & Outlook (given in my 2nd talk)

S. Bianco,F. Fabbri,D. Benson, I. Bigi:`A Cicerone for the Physics of Charm', hep-ex/0309021, to appear in Rivista del Nuovo Cimento, ~ 200 pages

I Theory

2 different aspects

`charm between world of bona fide heavy & light flavours'

light u,d s c heavy super-heavy b t accumulated evidence: charm `mostly somewhat' heavy

a priori semi-quantitative description

Non-Rel. Quark Models

still useful tool for training intuition & as diagnostics of results from sum rules & LQCD -but not good enough for final answers

- ➡ HQE: expansion in 1/m_Q
 - Ifetime ratios: a posteriori works!
- ➡ Light Cone Sum Rules
 - \otimes $D \rightarrow I \nu \pi, \rho$: a posteriori fails!

- Lattice QCD: only promise for truly quantit. treatment of charm hadrons with ability for systematic improvement
 - charm as bridge between heavy & light?
 - 🙂 needs`just more' time
 - monopoly of theoretical technology ?
- I.B. (Marbella '93):
- "A tau-charm factory is the QCD machine for the 1990's!"
- Yet: threshold for significance much higher in the 2000's!
- great opportunity for demonstrating theoretical control over strong dynamics: Hashimoto's talk!
- calibration for B physics
 - engineering input: absolute charm BR's
 - decay constants [not fundamental constants]: f_D , $f_{D_S} \rightarrow f_B$, f_{B_S}
 - Cathedral Paradigm': charm spectroscopy & B dynamics

essential QCD info to exhaust discovery potential in B physics!

(1.2) Probes for New Physics

- Beading transitions Cabibbo favoured (unlike for K & B)
 - scrutinize Cabibbo once & doubly suppr. modes
- SM phenomenology `dull'
 - D⁰-D⁰ oscillations `slow'
 - ◆ CP asymmetries `tiny'

How slow is `slow'? -- How tiny is `tiny'?

- D⁰-D⁰ oscillations: within SM Cabibbo & GIM suppr.
 not necessarily with New Physics
- ☺ ∠P: KM phases truly tiny
 - ► EP in DCSD -- ***
 - EP involving D⁰-D⁰ oscillations -- ***

(1.3) Theory of Charm

Z

Yet --

only up-type quark allowing full range of probes for New Phys.

- top quarks do not hadronize
- up quarks: no π^0 - π^0 oscillations possible

CP asymmetries basically ruled out by CPT

II Lessons on QCD

- $\begin{array}{ll} & \hbox{will not cover charmonia} \rightarrow & \hbox{Hashimoto-san \& Ted Barnes} \\ & \hbox{will not cover decay constants } f_D, f_{D_S} \rightarrow \hbox{Hashimoto-san} \\ & \hbox{$\sim f_D, f_{D_S} important parameters -- not constants of nature} \end{array}$
- 2.1 Is Charm Heavy? -- or: the HQE in Inclusive H_c Decays

$$\label{eq:mc} \Box = \left\{ \begin{array}{ll} 1.19 \pm 0.11 \ \mbox{GeV} & \mbox{charmonium sum rules I} \\ 1.30 \pm 0.03 \ \mbox{GeV} & \mbox{charmonium sum rules II} \\ 1.14 \pm 0.1 \ \mbox{GeV} & \mbox{moments of SL B decays} \end{array} \right.$$

$\Rightarrow \tau(\mathsf{D}^+) > \tau(\mathsf{D}^0) \sim \tau(\mathsf{D}_s) \geq \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

	1/m _c expectations	theory comment	data
τ(D⁺)/ τ(D ⁰)	$\sim 1 + (f_D/200 \text{ MeV})^2 \sim 2.4$	PI dominant	2.54 ± 0.01
$\tau(D_s)/\tau(D^0)$	1.0 - 1.07	without WA	
	0.9 - 1.3	with WA	1.22 ± 0.02
$\tau(\Lambda_c^+)/\tau(D^0)$	~ 0.5	Quark Model ME	0.49±0.01
$\tau(\Xi_{c}^{+})/\tau(\Lambda_{c}^{+})$	~1.3 - 1.7	"	2.2 ± 0.1
$\tau(\Lambda_c^+)/\tau(\Xi_c^0)$	~ 1.6 - 2.2	**	2.0 ± 0.4
$\tau(\Xi_c^+)/\tau(\Xi_c^0)$	~2.8	**	4.5 ± 0.9
$\tau(\Xi_c^+)/\tau(\Omega_c^0)$	~4	**	5.8 ± 0.9
$\tau(\Xi_c^0)/\tau(\Omega_c)$	~ 1.4	**	1.42 ± 0.14

- yes, apply expansion in 1/m_c at your own risk, but ...
- \circ saving grace: leading correction of order $1/m_c^2$ rather than $1/m_c$
- \odot observed pattern reproduced/predicted semiquantitatively -- with $\tau(D^+)/\tau(\Omega_c^{-0})\sim 20!$
- destructive PI main engine driving lifetime differences among mesons,
 yet WA -- while not leading -- still significant in D decays
 - more theoretical work needed on WA in meson decays
 - impact of WA on exclusive final states in meson decays: constructive in D⁰ and/or destructive in D_s?
- baryons present complex challenge
- description for baryonic widths helped by generous errors
- \bigcirc sole sign for significant discrepancy emerges in $\tau(\Xi_{c}^{\ +})$ --

observed lifetime 50 % longer than predicted !

Success in describing observed lifetime ratios one of the best confirmations for charm being a heavy quark whenever leading nonperturb. contributions ~ $O(1/m_Q^2)$

 whatever SELEX has observed -- I do not believe its peculiar events can be double-charm baryons:
 mass splittings too large

lifetimes too short without expected hierarchy

2.1.2 SL Branching Ratios

three issues:

- o absolute size of SL BR
- o ratios of SL BR's
- absolute size of $\Gamma_{SL}(D)$

new element: contributions of order 1/m²Q

BR_{SL}(D)

`Fly-in-the-ointment':

HQE → PI main engine driving $\Gamma_{NL}(D^{+}) \bigotimes s.t. < \Gamma_{NL}(D^{0})$ $\Gamma_{SL}(D^{+}) = \Gamma_{SL}(D^{0}) + O(tg^{2}\Theta_{C})$

 $\Rightarrow \mathsf{BR}_{\mathsf{SL}}(\mathsf{D}^+)/\mathsf{BR}_{\mathsf{SL}}(\mathsf{D}^0) = \tau(\mathsf{D}^+)/\tau(\mathsf{D}^0) + \mathcal{O}(\mathsf{T}g^2\Theta_{\mathcal{C}})$

BR_{SL}(D⁺) > "expected" ~ BR_{SL}(D⁰) i.e. `enhanced' `normal'

yet: $BR_{SL}(D^+) = (17.2 \pm 1.9) \% \sim BR_{SL}(c) \qquad BR_{SL}(D^0) = (6.75 \pm 0.29) \%$

resolution: μ_G^2/m_c^2 term in HQE lowers BR_{SL}(D)

 $BR_{SL}(D) \sim 9 \%$ for D=D⁺, D⁰ in order $1/m_c^2$

Ratios of $BR_{SL}(H_c)$

□ isospin invariance $\rightarrow \tau(D^+) / \tau(D^0) = BR_{SL} (D^+) / BR_{SL} (D^0) + O(tg^2 \theta_C)$

□ HQE yields $\tau(D_s^+) / \tau(D^0) \approx BR_{SL} (D_s^+) / BR_{SL} (D^0)$

semileptonic BR's for baryons do not reflect lifetime ratios!

$$\Gamma_{\mathsf{SL}}(\mathsf{D}) \neq \Gamma_{\mathsf{SL}}(\Lambda_{\mathsf{c}}) \neq \Gamma_{\mathsf{SL}}(\Xi_{\mathsf{c}}) \neq \Gamma_{\mathsf{SL}}(\Omega_{\mathsf{c}})$$

constructive PI in SL Ξ_c and Ω_c decays \longrightarrow

$$\begin{split} & \mathsf{BR}_{\mathsf{SL}}(\Xi_c^{\ 0}) \thicksim \quad \mathsf{BR}_{\mathsf{SL}}(\Lambda_c) \quad \text{vs.} \quad \tau(\Xi_c^{\ 0}) \thicksim \mathsf{0.5}{\cdot}\tau(\Lambda_c) \\ & \mathsf{BR}_{\mathsf{SL}}(\Xi_c^{\ +}) \thicksim \mathsf{2.5}{\cdot} \, \mathsf{BR}_{\mathsf{SL}}(\Lambda_c) \ \text{vs.} \quad \tau(\Xi_c^{\ +}) \thicksim \mathsf{1.3}{\cdot}\tau(\Lambda_c) \\ & \mathsf{BR}_{\mathsf{SL}}(\Omega_c) \lessdot \mathsf{15} \ \% \end{split}$$

possible only at a tau-charm factory

SL widths for charm baryons are highly nonuniversal!
 important test of HQE in charm transitions

HQE with factorizable contributios order $1/m_c^3$ yields merely ~ 2/3 of $\Gamma_{SL}(D)$ -- indications remainder from nonfactorizable contributions

► no accurate extraction of V(cb) from $\Gamma_{SL}(D)$

2.2 Exclusive H_c Decays

Theor. tools exist only for describing

- SL decays with 1 hadron/resonance
- NL " 2 hadrons/resonances

in final state

quark models:

- no reliable estimate of uncertainty
- 😕 no systematic improvement

light cone sum rules

- \otimes underestimate significantly observed $\Gamma(D^0 \rightarrow e^+ \nu \pi^-)$
- explanation: nonlocal operators & large 1/m_c correct. (!?)
 LQCD
- © can be improved systematically
- 😑 `our only hope'
- essential to extract V(cs) & V(cd) from SL decays of D^{0,+} & D⁺_s

2.2.2 Final States in SL H_c Decays

- $D^+/D^+_{s} \rightarrow I^+\nu \eta/\eta': \eta/\eta' \text{ wavefunctions}$
 - → NL D decays & CP asymm.
 - → NL B decays & CP asymm.
- $D^+/D^+_s \rightarrow I^+\nu$ glueballs

2.2.3 Two-body NL H_c Decays

tool chest:

- pQCD: makes hardly any sense to apply to charm decays
- QCD factorization: could be tried -- yet several reasons
 why it might fail: contributions ~ 1/m_c
- QCD sum rules a la Blok-Shifman: should be updated & refined
- quark models: for lack of anything better for the time being
- LQCD: needs to be unquenched!

Driving motivation:

Harnessing CP phenomenology as a probe for New Physics main road block:

lack of theor. control over final state interactions

need to `map out' whole Cabibbo landscape

-- Cabibbo favoured, once & doubly suppressed --

for D^0, D^+, D^+_s decays including multineutral final states

III `Tooling up' for B Studies

nonperturb. dynamics in exclusive $B \rightarrow I_V D$, $\rightarrow I_V D^* ...$

characterized by scale m_c , not $m_b!$

3.1 Spectra in inclusive SL D⁰, D⁺, D_s^+ , Λ_c Decays

challenge:

extract |V(cd)/V(cs)| from

- lepton energy spectra $d\Gamma/dE_1$
- hadronic recoil mass spectra $d\Gamma/dM_{X}$

in D⁰ & D⁺ & D_s⁺ \rightarrow I⁺ $_{v}$ X

3.2 Spectroscopy of Open Charm Hadrons

3 motivations for understanding charm spectroscopy

- to extract $\Gamma_{SL}(B)$ and its error from data
- to extract $B \rightarrow |v D/D^*$ and their errors
- impact on sum rules for $B \rightarrow I \vee D(s_q = 1/2 \text{ or } 3/2)$

 $\rho^{2}(\mu) - 1/4 = \sum_{n} |\tau_{1/2}|^{(n)} |^{2} + 2 \sum_{m} |\tau_{3/2}|^{(m)} |^{2}$ $\Lambda(\mu) = 2 (\sum_{n} \epsilon_{n} |\tau_{1/2}|^{(n)} |^{2} + 2 \sum_{m} \epsilon_{m} |\tau_{3/2}|^{(m)} |^{2})$ $\mu^{2}_{\pi}(\mu)/3 = \sum_{n} \epsilon_{n}^{2} |\tau_{1/2}|^{(n)} |^{2} + 2 \sum_{m} \epsilon_{m}^{2} |\tau_{3/2}|^{(m)} |^{2}$ where: $\tau_{1/2} \& \tau_{3/2}$ denote transition amplitudes for $B \to |v| D(s_{q} = 1/2 \text{ or } 3/2)$ with excitation energy $\epsilon_{k} \le \mu$ $\rho^{2}(\mu), \Lambda(\mu), \mu^{2}_{\pi}(\mu) \dots \text{ crucial quantities for describing}$ SL B decays

HQ Sum Rules

ρ	² (μ) - 1/4	$=\Sigma_n \tau_{1/2}$	(n) $ ^2 + 2\Sigma$	$_{\rm m}$ $ au$ $_{3/2}$ $^{(\rm m)}$ 2		Bj	199	0	
L3	1/2	$= -2 \Sigma_n \tau $	$_{1/2}$ ⁽ⁿ⁾ $ ^2$ +	$\Sigma_{ m m}$ $ au$ $_{ m 3/2}$ $^{ m (m)}$ 2		U	200	0	
r T	$(\mu) = 2 (\Sigma)$	$\Sigma_{\mathrm{n}} \epsilon_{\mathrm{n}} au_{\mathrm{1/2}} ^{\mathrm{m}}$	^{a)} $ ^2 + 2 \Sigma_m$	$\epsilon_{\mathrm{m}} \tau_{\mathrm{3/2}} ^{(\mathrm{m})} ^2 $		Vo	199	92	
μ^2	$e_{\pi}(\mu)/3 = \Sigma$	$\Sigma_{\rm n} \epsilon_{\rm n}^{2} au_{1/2} ^{(1)}$	ⁿ⁾ $ ^{2} + 2 \Sigma_{n}$	$\epsilon_{\rm m}^{2} \tau_{3/2} ^{(\rm m)} ^2$		BiSU	JVa	1994	
μ^2	$f_{\rm G}(\mu)/3 = -2$	$2 \Sigma_{\rm n} \epsilon_{\rm n}^{2} \tau _{1}$	$_{/2}$ ⁽ⁿ⁾ $ ^2 + 22$	$\Sigma_{\mathrm{m}} \epsilon_{\mathrm{m}}^{2} au_{3/2}^{\mathrm{(m)}} ^{2}$		BiSU	J 1	1997	
ρ^3	$_{\rm D}(\mu)/3=$	$\Sigma_{ m n} \epsilon_{ m n}^{3} { m l} au_{1/2}$	(n) $ ^{2} + 2\Sigma_{r}$	$_{\rm m}\epsilon_{\rm m}{}^3 au_{3/2}{}^{(\rm m)} ^2$		ChPi	r	1994	
ι - ρ	$B_{\rm LS}(\mu)/3 = 1$	- $\Sigma_{ m n} \epsilon_{ m n}^{3}$ l $ au_{ m 1/2}$	$_{2}^{(n)} ^{2} + 2\Sigma$	$\Sigma_{\rm m} \epsilon_{\rm m}^{3} au_{3/2}^{(\rm m)} ^2$		BiSU	J	1997	
where: $\tau_{1/2} \& \tau_{3/2}$ denote transition amplitudes for B \rightarrow I v D(s _q = 1/2 or 3/2) with excitation energy $\epsilon_k \leq \mu$									
-	rigorou	s definiti	ons, ineq	ualities + ex	perim	. con	stra	ints	
OT D	a A							26	

Problem: SR barely compatible with broad D resonances above 2400 MeV as 1/2 states (Uraltsev, Orsay group) Spring '03: BABAR finds $D_s(2317)$ infer $D_{ud}^{**}(1/2)$ below 2300 MeV

which would be consistent with sum rules

general lesson:

we need to understand charm spectroscopy

- ➡ to extract a precise value for V(cb) [& V(ub)] and
- search for right-handed charged currents of b quarks
 [if V(cb)|_{incl} & V(cb)|_{excl} inconsistent
 - right-handed currents!]

IV QCD Menu for a Super-τ-charm Factory

key advantage of a τ -charm factory:

extremely clean & model-independent measurements

yet very few things in life come for `free'

- run at different energies for different measurements
 - \blacksquare below charm threshold for τ studies
 - $e^+e^- \rightarrow \psi(3770) \rightarrow DD$
 - $e^+e^- \rightarrow DD^*$
 - $\mathbb{R}^{*} e^{+}e^{-} \rightarrow \mathbb{D}_{s}\mathbb{D}_{s} \quad \dots$
- need flexibility and
- the highest luminosity possible!

- below charm threshold for τ studies unique window on lepton dynamics: lepton-#, right-handed current, CP ? polarized beams?
- $e^+e^- \rightarrow \psi(3770) \rightarrow DD$: absolute BR's, CKM, full Cabibbo pattern, inclusive SL decays, right-handed currents, rare decays, CP
- $e^+e^- \rightarrow DD^*: D^0 \text{ oscillations, } CP$
- $e^+e^- \rightarrow D_s D_s$: absolute BR's, CKM, full Cabibbo pattern, inclusive SL decays, rare decays, CP
- $e^+e^- \rightarrow D_1D_2 + X$: charm spectroscopy
- $e^+e^- \rightarrow \Lambda_c \Lambda_c$: absolute BR's, inclusive SL decays, CP a must (I.B.)
- $e^+e^- \rightarrow \Xi_c \Xi_c$: absolute BR's, inclusive SL decays desirable (I.B.)

need flexibility, the highest luminosity possible -and watch the competition!