 BESIII Detector

13 Offline Computing System

13.1 Overview

The BES detector has been in operation for more than 12 years, and the BES offline data analysis environment has been developed and upgraded along with the development of the BES hardware and software. At present the BES data are processed on both HP-UNIX farm system and PC-farm system. The network system consists of a 1000Mbps optical fiber network together with a distributed 100Mbps fast Ethernet system, as well as a 100Mbps FDDI local area network.

Based on the existing BES computing environment, following points should be taken into account for the future BESIII offline computing system and software environment:

1. The system should be set up by adopting or referring to the latest technology

commonly used in HEP community, both in hardware and software, in order to benefit the collaboration and to have easier exchanges with other experiments.

2. The system should support hundreds of the existing BES software packages

and should serve for both experts of the BESII software and new members in the collaboration.

3. Many of the BESII packages will be modified or re-designed to suit for the
new computing environment.

The BESIII computing facility and software system will operate for many years. Thus they should have the scalability to keep up with the development of the technology in both the hardware and software. It should be highly flexible, powerful, reliable and easy for maintenance.

13.2 Requirements

13.2.1 BESIII Data Yields

The peak luminosity of the BESIII at the
[image: image9.png]ProxyDict

Userinterface

Histogram —— BesKernel EventiO|

\/

Cernlib ~| Panther

Test main

 resonance will be about 1033 cm
[image: image2.wmf]2

-

 s
[image: image3.wmf]1

-

. The event rate recorded on tape is estimated to be about 3000 Hz. The event size is estimated to be about 12 Kbytes/event for raw data, 24 Kbytes/event for reconstructed data(Rec.) and about 2 Kbytes for summary data(DST).

Assuming BESIII will take
[image: image4.wmf]Y

/

J

 data at the begin of the data taking for one year or more, and then move to Ψ’ data energy region. So the maximum data yields per year is about 1(1010 J/Ψ data . The total data size in first years is: 12(103(1(1010(120(1012 bytes. Detail information is listed in table 13.2-1.
 Table 13.2-1 Estimate of the BESIII data yields in the first year

	Data type
	Event size(k bytes)
	Total Data size(1012bytes)

	Raw
	12
	120

	Rec.
	24
	240

	DST
	2
	20

	M.C. Rec.
	24
	120

	M.C. DST
	2
	20

	Total
	
	640

13.2.2 Data Storage and Management

All kinds of data, including raw data and reconstructed data, are stored in tapes mounted on Robot in the computer center. The total amount of raw data in 5 years is estimated to be 12(103(2(1010(240(1012 bytes, which includes 120 Tbytes of J/Ψdata and 120 Tbytes of Ψ’, D and Ds data. Suppose the data reconstruction is repeated three times per year, the total size of the Rec. and DST data will be about 1440 Tbytes and 120 Tbytes respectively. The size of Rec. and DST data from Monte Carlo simulation will be about the same as that of real data.

All of raw and Rec. data, about 3120 Tbytes, will be put on the tape library. A total of 240 Tbytes DST data will be stored on a disk array accessed via high-speed network system. Details are listed in table 13.2-2.

 Table 13.2-2 Requirements of the tape and Disk space for BESIII Data

	Sort of data
	Amounts of data (Tbytes)
	Device

	Raw
	240
	Tape Lib.

	Rec.
	1440
	Tape Lib.

	DST
	120
	Disk

	M.C. Rec.
	1440
	Tape Lib.

	M.C. DST
	120
	Disk

	Total
	
	

13.2.3 CPU Power Requirement

According to the experience of data processing at BESII, required CPU power for data reconstruction is about 20 s×MIPS per event. Suppose the total active running time of the computer is about 2×107 second per year, and the data reconstruction is repeated three times a year for improving calibration and reconstruction, the required CPU power is about 130000 MIPS. Details are listed in table 13.2-3.

Table 13.2-3 The CPU power required for handling the BESIII data
	Job type
	Speed/Event

(MIPS
[image: image5.wmf]´

s)
	Total event

 (1010)
	Total CPU (MIPS)

	Data Rec.
	20
	 4
	 40000

	MC Sim.
	100
	 1
	 50000

	MC Rec.
	20
	 4
	 40000

	Total
	
	
	 130000

13.2.4 Bandwidth for Data Transfer

The bandwidth required for online data transfer from the online computing system to the offline data server should be more than 400 Mbps, which is determined by the product of trigger rate times the event length, i.e. 4000
[image: image6.wmf]´

12Kbytes(8. It also requires that the network system should be highly stable and secure to avoid event losses.

The bandwidth required for data transfer from the data server (i.e. RAID disk) to the reconstruction farm depends mainly on the processor speed of selected machines. The higher the processor speed, the larger the bandwidth required. Due to very high data traffic in the local network, it is necessary to create an isolated BES computing environment, which is separated from other part of the IHEP network, and can ensure a reasonable efficiency in data transfer.

13.3 Computing Environment

The main tasks of the BESIII Computing Environment can be divided into four parts: The first one is the various data handling such as the data Rec. and offline analysis; The second one is the transport of various data; The third one is storage and management of various data and documents; The fourth one is the communication between users and system devices.

To satisfy these requirements, the system to be built should have good performance, including stability, reliability and flexibility, with a reasonable and acceptable cost. Also the rapid development of advance technology in both computer hardware and software should be followed closely so that we can benefit from the latest development of technology. Especially a high-speed network is essential for mass storage system, such as a robot tape library and a disk array. Fig.13.3-1 shows a preliminary scheme of the computing system for the BESIII. The main considerations are the following:
[image: image7.jpg]14¢

Internet

G/E Switch

F/E Swithch F/E Swithch /E Swithch
]] P] T
[Ee = -3
pC pC pC)
Farml G/E Swithch Farm2 G/E Swithch Farm3 /B Sl shicl
" "
e A = = Sefver Server
SAN
R
R

UNT

Farm

Tape Library

Fig.13.3-1 The scheme of the BESIII computing system
CPU type and architecture: A high quality computing system based on PC/Cluster or PC/Grid technology will be taken. The CPU type can be any or all of Intel、AMD or IA64.

Data storage： The BESIII Storage System will adopt the visual technology of the Disk Array and Tape library with HSM(Hierarchical Storage Management). A SAN(Storage Area Network) construction can satisfy the requirement of large amount data storage, high access speed and expandability. In such a system, all the sub-storage system such as the Disk Array and the Tape Library, are connected through a switcher and are independent from the server.

Network and I/O control: In order to increase the data access speed and to reduce the interference, a second network based on SAN will be adopted to separate data transfer and normal network traffic. In addition, all nodes will have both 100TX/1000TX network cards, in which 100TX provides traditional TCP/IP services while 1000 TX provides NFS services

System software：The BESⅢ offline computing system will mainly adopt free software to reduce the cost and to have an easier exchange with other experiments in the world . The main components are the following:

1) RedHat/Linux as the system operation software;
2) Castor or MySQL or PostgreSQL for database system;

3) PBS for the batch system;
4) YP for user management and auto-mount for document management.
13.4 Overview of BESIII Offline Data Analysis System

13.4.1 Introduction

The main task of the BESIII software system is to convert raw data of detector responses into physics results. It consists of a main framework, the data reconstruction and calibration package, the Monte Carlo simulation of physics processes and detector responses, the database management and interfaces, various utility packages, and user’s physics analysis packages. It should also manage documents, software codes and libraries. The system should take the advantages of the Object Oriented technology by using the C++ computer language, while still keeps the possibility to incorporate some of the existing BES Fortran software packages. The system would also be taken into account practical needs, such as usability, stability and flexibility, and to accommodate conflicting needs between experts and novices.

13.4.2 Framework of the BESIII Offline software

In order to take advantages of the modern technology and utilize common tools of other HEP experiments in the world, the main framework of the BESIII offline software will be based on the Object-Oriented methodology and C++ language, and take into account the following points:

· It should support some of the existing BES packages written with the Fortran

language;

· It should use as much as possible existing HEP libraries.

· It should provide a uniform data management, code and library management,
and database access.

13.4.3 Calibration and Reconstruction

Most of the sub-detectors of the BESIII are different from that of the BESII, therefore the calibration and reconstruction code will mostly be re-written. Whether it is written in C++ or in Fortran, the software system should have a well separated calibration and reconstruction sequence, with a modular structure so that any changes of an intermediate step will not result in modifications of related code in a later stage. If C++ is adopted, some of the objectivity should be compromised, for example, data and operation should be well separated.

The main tasks of the reconstruction include track finding and fitting, Cluster finding, shower fitting and reconstruction, scintillating timing reconstruction, muon track finding in muon chambers and particle identification.

Data calibration will be done at various stages, both online and offline. Calibration constants will be stored in a database. It is also foreseen to have several calibration iterations so that data will be processed several times over a year.

13.4.4 Monte Carlo Simulation

Most of the event generators of the BESII can be re-used although some modifications may be needed. The simulation of the detector response will be a new package based on the GEANT4 program while a Fortran code based on the GEANT3 program in Fortran will be kept as a backup and for comparison. Detailed simulation of the drift chamber resolution using output of Garfield will be investigated. Light transport in scintillators of the Time-of-Flight system and the time resolution can be well simulated using GEANT4.

13.4.5 Common Tools and Libraries

Commonly used CERN libraries, both in C++ and in Fortran, will be used extensively. Physics analysis will be based on HBOOK, PAW, PAW++, ROOT, MN_FIT , Fitver and so on.

Some of the BESII libraries in Fortran, such as Telesis for kinematical fitting, events vertex fitting and event-kink fitting can be re-used.

The database of the BESIII contains the detector geometry, calibration constants, detector running status and conditions, environment parameters, etc. Some of the tables in the offline database are kept identical with that of the online database while some other tables will only appear in one of the two databases. The database will be managed by a free software based on SQL language, such as PostgreSQL, MySQL or MiniSQL.

Commercial software packages can also be used, as long as it is well received by the HEP community. For example, the software code will be managed most likely by CVS, RCVS, AFS or DFS and so on.

13.5 BESIII Offline Software Framework and Prototypes
The purpose of this software project is the development of BES III offline software for Monte Carlo (MC) simulation, data reconstruction and physics analysis. The common framework facilitating the offline software development, BES III Data Processing Application (BESF), has been developed mainly based on the Belle software infrastructure. In the current BESF framework, software prototypes for data reconstruction are being developed in parallel with development of MC simulation software in the BESIII Object-Oriented Simulation Tool (BOOST). Integrating simulation software with the BESF and running reconstruction algorithms on simulated data are the software developers’ major task in 2004. In the following chapters, we would like to introduce the BESF framework, reconstruction and simulation software design and prototypes.

13.5.1 Simulation

A reliable Monte Carlo simulation is essentially important both for detector design and physics analysis, it will usually take years for developers to work out a program on a complex experiment setup. We propose a BESIII simulation project BOOST based on Geant4[1]. General requirements are considered in the design of the full simulation framework. The main components of BESIII are totally different with sub-detectors of BES II, working within the old simulation scheme is not an easy job for new developers. Meanwhile, Geant4 is becoming mature with its powerful physics processes and modern software engineering, more and more collaborations, such as Babar[2], LHC[3] experiments, etc., are shifting their simulations to it. The maintainability, flexibility and extensibility are of first priority for large-scale software design especially for an experiment that will span more then ten years.
A general HEP simulation package consists of three main parts, event generator, particle tracking and detector response. Most of the current HEP event generators are written in FORTRAN many years ago, rewriting them in C++ or OO style is a formidable task and not realistic, so most Geant4-based programs still use them for primary event generation. GENBES, the isolated BESII generator package will keep its form in BESIII, its outputs will be interfaced with BOOST by HEPEVT[4] format.

For detector definition, physics interaction, particle tracking, and hit scoring, we use Geant4 kernel to describe these important processes. Recently, XML[5], an extensible markup language, is proven to be an efficient tool for the uniform detector description, we try to use it in BOOST.
Detector response, or signal generation, or digitization in Geant’s terminology is the most sophisticated part among the simulation procedures because it is out of Geant4 scope. A detailed simulation needs to understand the intrinsic characteristics and real performance of the detector. At the early developing stage, it is usually worked out by simple algorithm or parameterization on hit information.
The final output of BOOST should be in “raw” data format which mimics the on-line data acquisition system. On the other hand, hit information, as the intermediate results, should also be saved on disk as persistent objects. We try to use ROOT[6] package instead of an object-oriented database (OODBMS) for this purpose.

Right now, BOOST is well shaped, the hit information from most sub-detectors can be used to test or tune the offline reconstruction program.

13.5.2 Software Architecture

As the start point of BES III software development, the Belle AnalySis Framework (BASF)[7] was successfully adopted in the summer of 2003. After that, the framework has been modified to fulfill the specific requirements of BES III experiment, which leads to the BESF Framework. In order to make the framework more flexible and robust, the BESF developers also take in some reusable software components and infrastructures from other experiments such as the Service in Gaudi [8] and data management infrastructure in Babar software.

[image: image1.wmf]Y

/

J

Fig.13.5-1 Software packages and dependencies in the BESF

In the BESF software, the package is the minimum unit for grouping related software components into a cohesive physical entity. This decomposition can have import consequence for implementation related issues such as link dependency, configuration management, etc. The major packages of the BESF framework are shown in Fig.13.5-1. In this diagram, the BesKernel is the core part of the framework that implements the control on data processing. It depends on other four packages that are the EventIO package managing event input and output, the UserInterface package providing friendly interface for running job, the Panther[9] package that is an integral data management system and the BesEvent package implementing the interface to the ProxyDict. The ProxyDict package implements an object-oriented data management system that was originally developed in the Babar experiment. The ROOT and CERNLIB are the only two external libraries needed by Histogram package. The main package contains the main program responsible for creating the application manager instance steering data processing applications. In the Test package, a set of examples for using BESF can be found. The BESF framework facilitates the development of BES III reconstruction algorithms.

[image: image8.wmf]BesService

BesDataBaseService

BesEventIOService

BesHistogramService

BesPawHistogramSvc

BesRootHistogramSvc

BesEventOutput

BesIEventInput

BesNDSTEventInput

BesRawTEventInput

BesPantherEventInput

Fig.13.5-2 Class diagram for services

The Service is one of the key software components in Gaudi framework originally developed in LHCb[10]. It can be used to provide a set of utilities used by other software components. Services are setup and initialized once at the beginning of the job and used by other software components as often as they are needed. A concrete service is derived from the service base class and is managed by the framework. The service can be requested according to its name. After introducing the Service from the Gaudi framework, a number of concrete services have been implemented. Fig.13.5-2 shows the inheritance structure for service implementation. The BesService is a base class for the Service, in which the common interface for a concrete service is defined. For example it has Initialize() and Terminate() methods which are invoked by the application manager called BesFramework. The concrete services available in the current prototype, BesRawTEventInput, BesPantherEventInput and BesNDSTEventInput, are used to read the data of raw format, data of Panther format and DST data, respectively. The BesEventOutput service can be used to write data stored in memory to a persistent storage. The BesHistogramService specifies interfaces for booking and filling histograms and ntuples. The derived classes BesPawHistogramSvc and BesRootHistogramSvc support PAW format and ROOT format, respectively.

The separation of data and data processing component called module is a basic choice for the framework architecture. The data representing digits, clusters, tracks and so on are stored in an “in-memory data base”. In the current BES III software prototype, it is Panther that manages input/out data to/from reconstruction modules. The Panther data management is based on a bank system composed of tables. The contents of tables are defined in ASCII format. At runtime, modules can insert records into those tables. The corresponding Panther APIs for accessing the data stored in the Panther table are also available to modules. The modules are linked with the framework by the dynamic link. A module is made as a shared object and the framework links the module when requested at run time. The execution sequence of modules is defined by creating a path. And a path is defined as a chain of modules with a condition descriptor in which conditional branches to other modules can be made. Each path has a status variable that can be modified by every module in the path, and the conditional branches are defined with respect to the status. In this way, the execution sequence of modules can be determined at run-time as a result of data processing.

ProxyDict is an alternative data management system implemented in BESF. This system provides the client a transient event store, from which transient data objects can be stored and accessed in a type-safe fashion. It also acts as an interface for the mapping between transient object and its persistent equivalent. (This feature is not yet implemented in BESF).

The transient data created/used during the reconstruction/analysis processes are represented by C++ classes. These classes are inherited directly or indirectly from a base class BesDataObject, which is a abstract base class for holding common method definitions for all data object. Single instances or a list of instances of these classes may be stored in the transient event. In the case that single instance is to be stored, the data class is required to inherit directly from BesDataObject. In the case that a list of instances is to be stored, the data class is required to inherit from BesContainedObject class. This guarantees the navigability from the contained object back to its container. The BesContainedObject class itself is inherited from BesDataObject class.

If multiple instances of data objects from the same class are to be separately stored in the transient event, rather than being contained within a list, they must be identified by a unique key . The key is represented by class IfdKey or its descendant class.

For each transient data object(single instance or list of instances), a proxy object must be instantiated. The proxy class acts as a wrapper of the transient data object. It stores the pointer to the data object and provides an interface for converting the transient information to persistent information or vice versa. The proxy class must be a descendant class of IfdDataProxyTemplate<T>. Two derived classes, BesObjectListProxy<T> and BesObjectVectorProxy<T>, for list object proxy has been implemented.

The proxy object is then stored in the transient event represented by BesEvent class. The BesEvent class inherits from a base class IfdSimpleProxyDict which is implemented with a hash-table in order to support quick access to the object stored. The BesEvent provides several methods to access entities within the transient event in a type-safe manner. The BESF framework makes the transient event available to modules as an argument to the event (or Execute) member function.

Now the ProxyDict is under development, we will do more work to expand its functionalities.

13.5.3 Reconstruction

The data reconstruction is the core of offline data processing. At the moment, algorithm developers are focusing on the design and the first implementation iteration in the BESF framework. The following gives general description on MDC tracking algorithm, dE/dx reconstruction algorithm, Muon Counter tracking algorithm, and EMC reconstruction algorithm. The algorithm is known to be the least stable component of the HEP software system. As soon as fully simulated data are available, performance of these algorithms will be measured and evaluated. Only those that meets BES III requirement will become the candidates for the final offline system.

1. MDC Tracking

Charged particle tracking is performed with MDC. MDC consists of 43 sense wire layers: 19 axial layers and 24 stereo layers. The sense wire layers are arranged as, from innermost to outermost, 8 stereo, 12 axial, 16 stereo, and 7 axial layers. Each sense wire layer consists of a set of small drift cells. Total 6,860 sense wires are readout. Also the MDC are constructed as two parts: inner chamber and outer chamber. Inner chamber consists the 8 innermost stereo sense wire layers.
There are three main parts of the tracking software: event time determination, track finding, and track fitting. BEPCII design bunch spacing is 8 ns, to clearly resolve events in such high rate environment, event time resolution has to be at least 2.6 ns for >3 σseparation. We use TOF and MDC information to determine the event time, and this procedure is applied in two levels: pre-reconstruction level and post-reconstruction level.

The track finder consists of two sub-finders: r-φ and stereo finders. The former finds track candidates in the r-φ plane and then the latter finds the corresponding stereo hit wires to reconstruct tracks in the three dimensional space. The algorithm of the r-φ finders is based on the conformal transformation. By the conformal transformation, a circle or line which passes through the origin is transformed into a line. TSF (track segment finder) cells are created to find track segment with axial hit wires and to solve left/right ambiguity. A drift circle (a circle with wire position as the center, and drift distance as the radius) in x-y plane is transformed into a circle in the conformal plane (we also call it drift circle). This is important for the linking of TSF cells in the conformal plane. For the stereo finder, the stereo hit wires consistent with a track candidate in question are selected and hit positions are calculated where the drift circles and track circle touch. Finally track parameters are re-determined by a three dimensional fit using those selected axial and stereo hits, assuming a helical trajectory.
To improve the accuracy, we use Kalman filter method to fit the tracks again. The Kalman filter is the most popular tool for track fitting in high energy physics experiments today. It is an iterative local least square fit, i.e. each measurement is included step by step. This feature of Kalman filtering makes it easier to correct for various effects (multiple scattering, energy loss, etc.).
We will develop other track finder modules if necessary, such as CurlFinder, VeeFinder, KinkFinder. And plan to develop the software with various packages. For example, Kalman filter is an important package, which can be used in various places.

2. MDC dE/dx Reconstruction

One Function of Main Drift Chamber (MDC) of BES III is to provide adequate dE/dx resolution for particle identification. The dE/dx offline calibration and reconstruction software is being developed under the BESF framework. Efforts are taken to design it clearly and some successful Object Oriented program experiences from other HEP collaborations such as Belle, Babar and CLEO are studied. The dE/dx reconstruction code is designed as a module named BesMDCExRecon, which is inherited from BesModule class provided by the framework. It reads pulse height ADC of each hit and track data from tracking, then makes corrections to calculate energy loss per unit length and calculates expected dE/dx for each kind of particles. At last, particle ID probability for each particle species assumption is calculated using dE/dx information. BesMDCExRecon consists eight classes to realize the function mentioned. Raw data and tracking information is read in through Panther system, which takes care of data I/O among BESF modules for the offline software. The outputs of BesMDCExRecon are also packed into several related Panther tables after dE/dx reconstruction finishes.

3. Muon Counter Tracking

The most challenge part of BESIII muon software is how to handle the detector geometry. With the experience from PHENIX muon software and recently developed technique of XML, we find a solution to achieve the exactly same muon geometry appearing both in BESIII simulation (BOOST) and BESIII reconstruction (BESF). Currently the design allows the maximum flexibility of the muon counter, which means we can even handle the displacement of each read-out strip, the real granularity for muon system, in addition to the other assembling parts, such as RPC panels, iron absorbers in between RPC panels. The muon geometry codes for BESIII barrel and end-cap have been tested both in BOOST and in BESF and works well.

Basically, the muon simulation software is in a good shape, i.e., hit and digitization level output as well as their relations (as collection of pointers to destination object) are available now, which could be used as the primary input for test and benchmark of reconstruction algorithm.

In our design, some of muon reconstruction related functions have been merged into muon geometry class, this part has been tested and proved to be a good choice. In addition to that, other two important classes are hit class and road class. The former is responsible for the hit handling, such as to handle different type of input hits like GEANT hits, digitized hits and raw data. The road class is responsible for collections of hits, which form tracks in the detector. Both classes with very basic functions are available now. A simply module, road finder, is ready, which groups hits in hit container to from roads and save them in road container. The interface between road container and BESIII data flow, either Panther table or something else, is considered and can be easily incorporated to our code.

4. EMC Reconstruction

BESIII EMC REC offline software, including reconstruction and calibration, fulfils one of the important tasks of high precision measurement for γ, π0 and electron. Its function covers ‘make shower’ (shower formation), ‘track matching’ (matching with MDC track), ‘energy and position correction’ (more detailed correction), ‘particle ID’ (separation of γ, π0 , electron and hadron), ‘energy calibration’, ‘position calibration’, etc, which encompasses the entire chain of the offline work from digitalized ADC and TDC signals to some kinds of particles with energy and momentum usable by physicist.

C++ is selected as its primary programming language and object oriented analysis and design as its coding paradigm. The thought of module chooses an easy way to design and understand the structure of whole process, and even more it will be easy used by future users. Modules are grouped by its function or usage, such as ‘make shower’ and ‘track matching’. This provides minimum dependence to each other for all these modules, and, in particular, a lot of extensible space for following programmer, which allows for increased functionality once a better understanding of the detector has been reached.

‘Event data model’, ‘environment model’, and ‘function model’ are designed to give a clear scheme of each module. ‘Event data model’ defines the basic data structure of an event, while ‘function model’ tells what to do with these data with the navigation of ‘environment model’, which includes some critical parameters or some rules or some debug configure. Each thought in reconstruction and calibration is implemented in this feat structure. The character of these three parts also allows that future code developers can fix his concentration only to ‘function model’ when a better method comes out.

13.5.4 Raw Data and Geometry Information Access

The raw data coming out of BES III detector is in the byte-stream format. The design for algorithm’s access to raw data is still in progress. In order to identify the readout channels and facilitate organizing and accessing the real and simulated raw data, an offline identification scheme has been developed. In the scheme, an identifier has the fields that describe the logical layout of the channel, for example, the detector module number, layer number, barrel or end-cap, etc. The byte-stream data is unpacked and converted to raw data objects in the raw data conversion service. Each raw data object is labeled with an offline identifier. In the process of raw data unpacking, the online identifiers contained in the byte-stream data are mapped to offline identifiers. In the proposed implementation design, the byte-stream data for a whole event are read into the Panther by an EventIO service. The algorithms then access to the raw data through interfaces defined by raw data conversion services where raw data unpacking, online identifier and offline identifier mapping and raw data object formation are implemented.

The hierarchically structured offline identifiers also provide a means of organizing and retrieving detector geometry information that is required by reconstruction algorithms. In the current prototype, the algorithms request geometry services for geometry data by identifiers. The geometry service is detector-specific, which means there is a service for each sub-detector system. In the initialization phase, geometry data are read from the database through data access objects that invoke database’s APIs for database accessing. For the performance purpose, the geometry data are cached inside the geometry service.

13.5.5 Outlook

The central goal of current framework and prototypes is to establish full-functioned data reconstruction algorithms and form the complete data processing chain from byte-stream data to reconstructed data such as MDC tracks and EMC showers. At the meantime, we are collecting requirements from online Event Filter (EF) system, which operates on events that pass the first level trigger and performs further real-time selection using software method. It is desirable that offline algorithms can be plugged into EF framework without any modification. On the other hand, the Event Filter Selection software should be able to run transparently in the BES III offline environment for the following purposes:

1) development, testing and verification of EF software components.

2) determination and tuning of the performance in terms of selection efficiency, execution time and event rates based on simulation

3) validation of the results and performance of the online system

4) studying trigger efficiency, acceptance and biases once real data are available
The possibility of using the BESF framework for online and offline purposes are being investigated.
The software project is still at an early stage and the framework certainly will evolve based on results of ongoing validation and accumulated BES III requirements.

References

[1] http://cern.ch/geant4
[2] http://www.slac.stanford.edu/bfroot/computing/offline/simualtion/web
[3] http://cmsdoc.cern.ch/oscar
 http://atlas.web.cern.ch/atlas/groups/software/oo/simulation/geant4
[4] http://www.thep.lu.se/~torbjorn/pythia.html
[5] http://gdml.web.cern.ch/gdml
[6] http://root.cern.ch
[7] Itoh, R., BASF - BELLE AnalysiS Framework, Talk given at Computing in High-energy Physics (CHEP 97), Berlin, Germany, 7-11 Apr 1997
[8] Barrand, G. and others, GAUDI - A software architecture and framework for building HEP data processing applications, Comput. Phys. Commun., 140(2001) 45-55
[9] Shojiro Nagayama, Panther User’s guide version 3.0

[10] http://lhcb.web.cern.ch/lhcb/
Paw

346
345

_1046695247.unknown

_1046881304.unknown

_1133267293.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

BesService�

�

�

�

BesDataBaseService�

�

�

�

BesEventIOService�

�

�

�

BesHistogramService�

�

�

�

�

�

�

�

�

BesPawHistogramSvc�

�

�

�

BesRootHistogramSvc�

�

�

�

�

�

�

�

�

�

�

�

BesEventOutput�

�

�

�

BesIEventInput�

�

�

�

�

�

�

�

�

BesNDSTEventInput�

�

�

�

BesRawTEventInput�

�

�

�

BesPantherEventInput�

�

�

�

�

�

�

�

�

�

_1046776655.unknown

_1040712834.unknown

_1040712808.unknown

