$\phi_3(\gamma)$ extraction in *B* decays

Tapas Ranjan Sarangi IPNS, KEK, Japan Belle Collaboration

CHARM 2006, Beijing, China

Tapas R. Sarangi

 ϕ_3 in Belle

ϕ_3 related decay modes

 $D^{(*)}\pi$ system [interference between CFD, DCSD] Time dependent analysis of $B^0 \rightarrow D^{(*)}\pi^+$, [I. Dunietz, J. Rosner, R.G.Sachs]

 $\frac{D^{(*)} K \text{ system [interference between same final states of D-meson decays]}}{\text{Analysis of } B^+ \rightarrow D_{CP} K^+, \text{ [Gronou, London, Wyler]}}{\text{Analysis of } B^+ \rightarrow D_{\sup} K^+, \text{ [Atwood, Dunietz, Soni]}}{\text{Dalitz analysis of } B^+ \rightarrow [K_S^0 \pi^+ \pi^+]_D K^+, \text{ [Giri, Grossman, Soffer, Zupan]}}$

$sin(2\phi_1+\phi_3)$ in $B^0 \rightarrow D^{(*)}\pi^+$ decays

Interference b -> c (Cabibbo-Favoured), b -> u(Doubly-Cabibbo-Supressed)

ratio between DCSD and CFD, R =
$$|\frac{A_2}{A_1}| \approx 0.02$$
 CP violation

Only tree diagrams, no penguins
 Clean methods of extraction, no model dependency
 High branching fraction for favored decay(3x10^-3)

Extraction mechanism

Two methods 🛁 Full reconstruction, Partial reconstruction

Full reconstruction: $\overline{B}^0 \rightarrow D^{(*)+}\pi_{f}^{-}; D^{*+} \rightarrow D^0\pi_{s}^{+}, D^{+}\pi_{s}^{0}$ $D^0 \rightarrow K\pi^{+}, K\pi^{+}\pi^{0}, K\pi^{+}\pi^{+}\pi^{-}, K_{s}\pi^{+}\pi^{-}; D^{+} \rightarrow K\pi^{+}\pi^{+}; K_{s} \rightarrow \pi^{+}\pi^{-}$

Experimental methods

Decay rates and experimental PDFs

$$P(B^{0} \to D^{(^{*+)}} \pi^{-}) = N[1 - Ccos(\Delta mt) - (S^{+} - S^{+}_{tag})sin(\Delta mt)]$$

$$P(B^{0} \to D^{(^{*-)}} \pi^{+}) = N[1 + Ccos(\Delta mt) - (S^{-} + S^{+}_{tag})sin(\Delta mt)]$$

$$P(\bar{B}^{0} \to D^{(^{*+)}} \pi^{-}) = N[1 + Ccos(\Delta mt) + (S^{+} + S^{-}_{tag})sin(\Delta mt)]$$

$$P(\bar{B}^{0} \to D^{(^{*-)}} \pi^{+}) = N[1 - Ccos(\Delta mt) + (S^{-} - S^{-}_{tag})sin(\Delta mt)]$$

$$2\phi_{1} + \phi_{3}$$

$$C = \frac{1 - R_*^2}{1 + R_*^2} \approx 1$$

$$S^{+-} = \frac{2R_*}{1 + R_*^2} \sin(2\phi_1 + \phi_3 \pm \delta_*)$$

CP violation parameter

 $P\phi_1 + \phi_3 \Rightarrow$ weak phase difference $\delta_* \Rightarrow$ strong phase difference

 $S_{tag}^{+-} \Rightarrow$ effective parameters for tag side CP violation effect tag side B -> DX can mimic the CP asymmetry of signal side Obtained experimentally from $B \rightarrow D^* I_V$ flavor specific decay Systematic only for full reconstruction Partial reconstruction uses only lepton tags

<u>**Results from Belle**</u>

New! published in Phys. Rev. D 73, 092003(2006) Using 386 M BB pair

 $D^{*}\pi \text{ Partial Rec}$ $S^{+}_{D^{*}\pi} = 0.048 \pm 0.028 \pm 0.017$ $S^{-}_{D^{*}\pi} = 0.034 \pm 0.027 \pm 0.017$

Combined Result

 $|\sin(2\phi_1+\phi_3)| > 0.44$ at 68% CL for $D^*\pi$ $|\sin(2\phi_1+\phi_3)| > 0.52$ at 68% CL for $D\pi$

Tapas R. Sarangi

 $\mathbf{B} + \mathbf{Decay}$ $\mathbf{D} = \mathbf{D}^{0} + r e^{i\theta_{+}} \mathbf{D}^{0}$ $\mathbf{D} = \mathbf{D}^{0} + r e^{i\theta_{-}} \mathbf{D}^{0}$ $\mathbf{D} = \mathbf{D}^{0} + r e^{i\theta_{-}} \mathbf{D}^{0}$ $\mathbf{F} = \left| \frac{A(B^{+} \rightarrow D^{0} K^{+})}{A(B^{+} \rightarrow \overline{D}^{0} K^{+})} \right| \approx \left| \frac{V_{ub}^{*} V_{cs}^{*}}{V_{cb}^{*} V_{us}} \right| \approx 0.1 - 0.3$

relative phase difference $\theta_{+} = \phi_{3} + \delta$, $\theta_{-} = -\phi_{3} + \delta$ ϕ_{3} weak phase difference

 δ strong phase difference

Tapas R. Sarangi

<u>GLW method</u>

***Reconstruct CP-even(D1), CP-odd(D2) eigenstates**

$$D_1 \rightarrow K^+ K , \pi^+ \pi^-$$
$$D_2 \rightarrow K_S^0 \pi^0 , K_S^0 \omega , K_S^0 \phi$$

Partial rate asymmetry :

 $\delta_{B}^{'} = \begin{cases} \Gamma(B \to D_{1,2}K) - \Gamma(B^{+} \to D_{1,2}K^{+}) \\ \Gamma(B \to D_{1,2}K) + \Gamma(B^{+} \to D_{1,2}K^{+}) \\ \Gamma(B \to D_{1,2}K) + \Gamma(B^{+} \to D_{1,2}K^{+}) \\ \Gamma(B \to D_{1,2}K) + \Gamma(B^{+} \to D_{1,2}K^{+}) \\ \Gamma(B \to D_{1,2}K) / Br(B \to D_{1,2}\pi) \\ Br(B \to D^{0}K) / Br(B \to D_{1,2}\pi) \\ Br(B \to D^{0}K) / Br(B \to D^{0}\pi) \\ \delta + \pi \quad \text{for } D_{2} \quad ' \quad A_{1}R_{1} = -A_{2}R_{2} \end{cases}$

3 observables, 3 unknowns $r_{\rm B}$, δ , ϕ_3 unknowns

<u>Results from GLW method</u>

Phys. Rev. D 73, 051106(R) (2006) 275 M BB pairs

modes used $\Rightarrow D_{CP}K$, D_{CP}^*K

Can't constrain r from this method alone need more statistics

$B \rightarrow [K^+\pi^-]_D K$ ADS method

Similar order of magnitude enhances the CP violation

$$R_{\rm DK} = \frac{Br(B \to D_{\rm sup} K)}{Br(B \to D_{\rm fav} K)} = r_{\rm B}^2 + r_{\rm D}^2 + 2r_{\rm B} r_{\rm D} \cos \phi_3 \cos \delta$$
$$r_{\rm B} \equiv \frac{A(B \to \overline{D}^0 K)}{A(B \to D^0 K)}, \quad \delta = \delta_{\rm B} + \delta_{\rm D}$$
$$r_{\rm D} \equiv \frac{A(D^0 \to K^+ \pi^-)}{A(\overline{D}^0 \to K^+ \pi^-)} = 0.060 \pm 0.003 \text{ (input)}$$

Tapas R. Sarangi

 ϕ_3 in Belle

Results from ADS method

hep-ex/0508048 386 M BB pairs

 $r_{\rm B} < 0.18@90\% CL$ $0^{0} < \phi_{3} < 180^{0}$, $0.054 < r_{\rm D} < 0.066(2\sigma interval)$

Tapas R. Sarangi

 ϕ_3 in Belle

 $\underline{B}^{+} \rightarrow [K_{\rm S}^{0} \pi \pi]_{\rm D} K^{+} \text{ Dalitz analysis}$

*A.Giri, Y.Grossman, A.Soffer & J.Zupan, Phys. Rev. D68, 054018 (2003)
 *A. Bondar, Proc. of Belle Dalitz analysis meeting, 24-26 Sep. 2002

3 modes are used for this analysis $B^+ \rightarrow D^0 K^+$, $D^{*0} K^+$, $D^0 K^{*+}$ same final states for $D^0, \bar{D}^0 \rightarrow K^0_S \pi^+ \pi^-$ (quasi 2-body decay) $\tilde{D} = |D^0 > + re^{i\theta}|\bar{D}^0 >$

Dalitz plot density gives information about r, and θ

•Amplitude for each Dalitz plot point :

$$B^{+} \to DK^{+} \Rightarrow M_{+} \equiv f(m_{+}^{2}, m_{-}^{2}) + re^{i\phi_{3}+i\delta} f(m_{-}^{2}, m_{+}^{2})$$

$$B \to DK \Rightarrow M_{-} \equiv f(m_{-}^{2}, m_{+}^{2}) + re^{-i\phi_{3}+i\delta} f(m_{+}^{2}, m_{-}^{2})$$

$$m_{+}^{2} = m_{K_{S}^{0}\pi^{+}}^{2}, m_{-}^{2} = m_{K_{S}^{0}\pi^{-}}^{2}$$

Tapas R. Sarangi

Dalitz analysis method

Statistical sensitivity of the method depends on the properties of the 3-body decay involved

*(For $|\mathbf{M}|^2 = \mathbf{Const.}$ there is no sensitivity to the phase θ) Large variations of \mathbf{D}^0 decay strong phase are essential

 $f(m_{K_{s}^{0}\pi^{+}}^{2}, m_{K_{s}^{0}\pi^{-}}^{2})$ are known paramters simultaneous fit to the B^{+} , B data obtain parameters ϕ_{3} , r, δ

•Model dependent fit to the experimental data from flavor tagged $D^* \rightarrow D^0 \pi$ •Model is described by a set of two-body decay amplitudes + NR term •As a result, model uncertainty in the $\phi 3/\gamma$ measurement

Dalitz analysis

hep-ex/0604054, submitted to Phys. Rev. D

<u>Dalitz analysis</u>

Fitting X_{+} , Y_{+} instead of r, ϕ_3 , δ New approach has low bias, better sensitivity, and easy plots

 $\boldsymbol{x}_{+-} = \Re(\boldsymbol{r}_{\mathrm{B}} \boldsymbol{e}^{i\phi_{3} \pm \delta}) = \boldsymbol{r}_{\mathrm{B}} \cos(\pm\phi_{3} + \delta), \quad \boldsymbol{y}_{+-} = \Im(\boldsymbol{r}_{\mathrm{B}} \boldsymbol{e}^{i\phi_{3} \pm \delta}) = \boldsymbol{r}_{\mathrm{B}} \sin(\pm\phi_{3} + \delta)$

Tapas R. Sarangi

 ϕ_3 in Belle

<u>Result from Dalitz analysis</u>

Combining 3 modes :

 $\phi_3 = 53^{0 + 15}_{-18}(\textit{stat.}) \pm 3^0(\textit{syst.}) \pm 9^0(\textit{model}) \Rightarrow 8^0 < \phi_3 < 111^0(2\sigma \textit{interval})$

 $r_{\rm DK} = 0.159^{+0.054}_{-0.050} \pm 0.012(syst.) \pm 0.049(model)$

CPV significance is 74% $r_{D^*K} = 0.175_{-0.099}^{+0.108} \pm 0.013(stat.) \pm 0.049(model)$

 $r_{DK^*} = 0.564^{+0.216}_{-0.155} \pm 0.041(syst.) \pm 0.084(model)$

Constraint on $r_{\rm B}$

Slide by A. Bondar shown at capri

Estimates of $r_{\rm B}$ value from the combination of Belle and BaBar data

Construct PDF from different measurements using experimental observables:

•D* π system needs more experimental information on R, δ $|\sin(2\phi_1 + \phi_3)| > 0.44$ at 68% *CL for D** π $|\sin(2\phi_1 + \phi_3)| > 0.52$ at 68% *CL for D* π

•GLW method needs more statistics to constrain $r_{\rm B}$ •Suppressed modes of DK has not seen yet. $r_{\rm B} < 0.18 @ 90 \% CL$ $0^0 < \phi_3 < 180^0$, $0.054 < r_{\rm D} < 0.066$

DK Dalitz analysis is in a good shape.
Model dependency is the major uncertainty, need to solve
A model independent approach is best way

Model dependent fit

Intermediate modes	Amplitude	Phase, o	Fit fraction
$K_s \sigma_1$ (M=520±15 MeV, Γ =466±31 MeV)	1.43±0.07	212±4	9.8%
<i>K</i> _s ρ(770)	1 (fixed)	0 (fixed)	21.6%
$K_s \omega$	0.0314 ± 0.0008	110.8 ± 1.6	0.4%
$\overline{K_s}f_{\theta}(980)$	0.365±0.006	201.9±1.9	4.9%
$K_s \sigma$, (M=1059±6 MeV, Γ =59±10 MeV)	0.23±0.02	237±11	0.6%
$K_{\rm s} f_{\rm s}(1270)$	1.32±0.04	348±2	1.5%
$K_{c} f_{c}(1370)$	1.44 ± 0.10	82±6	1.1%
$K_{2} \circ (1450)$	0.66±0.07	9±8	0.4%
$K^*(892)$ + π^-	1.644 ± 0.010	132.1±0.5	61.2%
$K^{*}(892) - \pi^{+}$	0.144±0.004	320.3±1.5	0.55%
$K^{*}(1410)^{+}\pi^{-}$	0.61±0.06	113±4	0.05%
$K^{*}(1410)^{-}\pi^{+}$	0.45±0.04	254±5	0.14%
$K_{a}^{(1430)^{+}}\pi^{-}$	2.15±0.04	353.6±1.2	7.4%
$K_{a}^{*}(1430)$ - π^{+}	0.47±0.04	88±4	0.43%
$K^{*}_{*}(1430)^{+}\pi^{-}$	0.88±0.03	318.7±1.9	2.2%
$K^* (1430)^{-}\pi^+$	0.25±0.02	265±6	0.09%
$K^*(1680)$ +T	1.39±0.27	103±12	0.36%
$K^*(1680)^-\pi^+$	1.2±0.2	118±11	0.11%
Nonresonant	3.0±0.3	164 ± 5	9.7%