

Charm Decays at B Factories

Brian Meadows University of Cincinnati

Tau-Charm Workshop, IHEP, Beijing, China, Jun 5-7, 2006

Outline

- Charm Decays at B Factories:
 - (Semi-) Leptonic and rare decays *P. Jackson*
 - D Mixing A. Rahimi
 - Dalitz Plots *M. Papagallo*
 - Charm Baryons *R. Chistov*
 - Charmonium and other spectroscopy S. Olsen, A. Palano, B. Yabsley, P. Pakhlov
 - Tau Physics G. Lafferty
- □ Here Choice of some results (probably) not covered in above:
 - Charm Baryons (mostly from BaBar)
 - Charm Mesons a few items
- Summary

BaBar and Belle

- Main purpose: Study CP violation in asymmetric $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - Both experiments have far exceeded their design goals
 - Approx. 1 ab⁻¹ integrated flux combined

IHEP, Beijing, China, June 5-7, 2006

Charm Hadrons at "B" Factories?

• Cross sections are large

e^+e^-	\rightarrow	σ
$b \overline{b}$		$1.05 \ \mathrm{nb}$
$c \overline{c}$		$1.30 \mathrm{nb}$
$s \overline{s}$		$0.35 \mathrm{nb}$
$uar{u}$		$1.39 \mathrm{nb}$
$dar{d}$		$0.35 \mathrm{nb}$

- □ Very high statistics (~1.4 x 10⁶ D's / fb⁻¹). Also:^E_{CM} (GeV)
 - Continuum production above and below 4S.
 - B decays allow measurement of absolute BF's, and maybe spins ?
 - D tagging ~10⁷ reconstructed D's.
 - Can study charm baryons
 - ISR events allow scan be used for continuum scans
 - τ , γ - γ events

Charm Baryons

IHEP, Beijing, China, June 5-7, 2006

Charm Baryon States

□ L=0 Ground State – almost full:

 $\begin{aligned} J^{P} = 1/2^{+:} \{6\}_{qq} & \Sigma_{c}(2455), \Xi_{c}(2470), \Omega_{c}(2698) \text{ All seen} \\ J^{P} = 1/2^{+:} \{\overline{3}\}_{qq} & \Lambda_{c}(2285), \Xi_{c}(2575) & \text{All seen} \\ J^{P} = 3/2^{+:} \{6\}_{qq} & \Sigma_{c}(2520), \Xi_{c}(2645), ?? & \text{All but } \Omega_{c}^{*} \end{aligned}$

• L>1 - filling up ?

 $\begin{array}{lll} \mathsf{J}^{\mathsf{P}} = 1/2^{-:} & & -\Lambda_{\mathsf{c}}(2593), \, \Xi_{\mathsf{c}}(2790), \, \dots & & \dots \text{ from CLEO 2} \\ \mathsf{J}^{\mathsf{P}} = 3/2^{-:} & & -\Lambda_{\mathsf{c}}(2625), \, \Xi_{\mathsf{c}}(2815), \, \dots & & \Lambda(\text{or } \Sigma)_{\mathsf{c}}(2880), \, \Lambda(\text{or } \Sigma)_{\mathsf{c}} \ (2765) \ ?? \end{array}$

□ Several more new states from BaBar and Belle ... and more

IHEP, Beijing, China, June 5-7, 2006

First Charm Baryon \rightarrow Charm Meson $\Lambda_c(2940)$

 Observed in cc continuum production in D⁰p decay mode (D⁰→ K⁻π⁺, K⁻π⁺π⁻π⁺)

<u>Λ_c(2940)+</u>:

 $M = (2939.8 \pm 1.3 \pm 1.0) MeV/c^2$

 $\Gamma = (17.5 \pm 5.2 \pm 5.9) \text{ MeV}$

New Baryon $\Lambda_c(2940)$

• Neither $\Lambda_c(2940)$ nor $\Lambda_c(2880)$ seen in D^+p system

 \rightarrow <u>Neither</u> are Σ_c 's

Other observations:

Why not seen in $\Lambda_c \pi^+ \pi^-$ or $\Sigma_c \pi$?

Three states predicted near this mass $3/2^{-}$, $1/2^{+}$, $1/2^{-}$

 $\Lambda_{\rm c}(2940)$ is 6 MeV/c² below D^*p threshold

 $\Lambda_{\rm c}$ (2940) is π mass above $\Lambda_{\rm c}$ (2880)

Brian Meadows, U. Cincinnati

IHEP, Beijing, China, June 5-7, 2006

- Predicted in mass range $3.5 3.8 \text{ GeV/c}^2$
- Predicted cross-sections from e⁺e⁻ @ 10 GeV/c² ~ 1-250 fb Double-charm cross-sections under-estimated by NRQCD
 → expect to produce 10² – 10⁴ from 232 fb⁻¹

SELEX reports state at 3.52 GeV/c² Σ^{-} beam ~ 1,630 Λ^{+}_{c} Not confirmed by FOCUS γ beam ~ 19,500 Λ^{+}_{c} Nor BaBar, nor Belle $e^{+}e^{-} \sim 10^{6} \Lambda_{c}^{+}$

Search made throughout ranges indicated 50 fits: Double Gaussian signal on linear background in 10 MeV/c² ranges.

Results compare with

$$egin{aligned} \mathcal{B}(\Xi_c^0 &
ightarrow \Xi^- \pi^+) imes \ldots \ & \dots \ \sigma(e^+e^-
ightarrow \Xi_c^0 X) \ &= (388 \pm 39 \pm 41) ext{ fb} \ \mathcal{B}(\Xi_{cc} &
ightarrow \Xi_c^0 \pi' s) \sim ext{few}\%??] \end{aligned}$$

 Belle also found no evidence for the state seen by SELEX using an even larger sample.

While searching for weak decay of $\Xi_{cc} \rightarrow \Lambda_c^+ K^- \pi^+$ $\downarrow \rho K^- \pi^+$

Found strong decays of new Ξ_c^* 's instead:

 $\Xi_{\rm cx} \rightarrow \Lambda_{\rm c}^{+} K^{\!\scriptscriptstyle -} \pi^{+}$

No structure in Λ_c^+ sidebands

Nor in $\Lambda_c^+K^+\pi^-$ or $\Lambda_c^+K^-\pi^-$ wrong sign combinations.

462 fb ⁻¹	PRELIMINARY
-----------------------------	-------------

New State	Mass, (MeV/c^2)	Width, (MeV/c^2)	Yield, (events)	Significance, (σ)
$\Xi_{cx}(2980)^+$	$2978.5 \pm 2.1 \pm 2.0$	$43.5\pm7.5\pm7.0$	405.3 ± 50.7	6.3
$\Xi_{cx}(3077)^+$	$3076.7 \pm 0.9 \pm 0.5$	$6.2\pm1.2\pm0.8$	326.0 ± 39.6	9.7

IHEP, Beijing, China, June 5-7, 2006

The Spin of The Ω^{-}

The existence of large samples of charm baryons makes possible what was once incredibly difficult !

Earlier results from bubble chambers using small, unaligned samples of Ω^{-} could only conclude that J>1/2.

Assume the spin of charmed parent is 1/2:

In the charm hyperon rest frame, the Ω^- is produced with helicity $\frac{1}{2}$

independent of the Ω^{-} spin J.

The Spin of The Ω^{-}

□ The $\Omega^{-} \rightarrow \Lambda$ K⁻ decay distribution in its "helicity frame" is then

- $I \propto \sum_{\lambda_i,\lambda_f}
 ho_i \left| A^J_{\lambda_f} D^{J*}_{\lambda_i\lambda_f}(\phi, heta_h,0)
 ight|^2$
- ρ_i (is density matrix)
- $\lambda_i, \ \lambda_f$ are initial and final helicities

J_{Ω}	Fit χ^2/NDF	Fit probability	Comment
1/2	100.4/9	1×10^{-17}	Fig. 4, solid line
3/2	6.5/9	$0.69 \ (\beta = 0)$	Fig. 3, solid curve
3/2	6.1/8	$0.64~(\beta \neq 0)$	Fig. 3, dashed curve
5/2	47.6/9	3×10^{-7}	Fig. 4, dashed curve

IHEP, Beijing, China, June 5-7, 2006

How About Charm Baryons?

□ Information on charm baryon spins could come from decays like $B^{+,0} \rightarrow \Xi_c^{0,-} \Lambda_c^+$

• So far (Belle 357 fb⁻¹) only ~12 events where $\Xi_c^0 \rightarrow \Xi^- \pi^+$ $\mathcal{B}(B^+ \rightarrow \Lambda_c^+ \bar{\Xi}_c^0) \times \mathcal{B}(\bar{\Xi}_c^0 \rightarrow \bar{\Xi}^+ \pi^-)$ $= (5.6^{+1.9}_{-1.5} \pm 1.1 \pm 1.5) \times 10^{-5}$

 $\Xi^{-}\pi^{+}$

 \rightarrow Not promising for determination of J

Maybe Three- (or more-) Body Decays ?

- 3-body BF's about 10 x 2-body $B^{-} \rightarrow \Lambda_{c}^{+} \overline{p} \pi^{-}$ (product of BF's ~ 2 x 10⁻⁵) have. significant # events: $B^{-} \rightarrow \Sigma_{c}^{0} \overline{p} (\Sigma_{c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-})$
- Lots of other things going on
 - Good techniques for dealing with coherent backgrounds may be required.

Brian Meadows, U. Cincinnati

Charm Mesons

IHEP, Beijing, China, June 5-7, 2006

Since charm quark is not infinitely heavy, some =1/2, 3/2 mixing can occur between the two =1⁺ states.

Mixing in $J^P = 1^+ D_{sJ}(2460)/D_{s1}(2536)$?

- Belle has analyzed D_{s1}(2536) decays to D^{*}K to look for an S-wave component.
 - (In the limit the *c* quark has infinite mass, the narrow states would decay in pure D-wave)
- Angular distribution of π^+ in D^{*+} system leads to the limits:

 $0.277 < \Gamma_{s}/(\Gamma_{s}+\Gamma_{D}) < 0.955$ Indicative of some S-wave

281 fb⁻¹

D_{sJ}'s - Overtly Exotic ?

232 fb⁻¹ hep-ex/0604030

- No indication of overtly exotic charge states
 Circles are D_s side-bands
- For $D_{sJ}(2460)$ need to look in $D_{s}^{(*)+}\pi^{0}\pi^{+,-}$ if $J^{P}=1^{+}$
- (See Antimo Palano's talk for full details)

 D_{sJ}^+

Decays of $B^0 \rightarrow D_s(D_{sJ})^+ + h^-$

• Exotic nature of D_{sJ} states could show up in

$$R_h = rac{\mathcal{B}\{B^0
ightarrow D_s^+ h^-\}}{\mathcal{B}\{B^0
ightarrow D_{sJ}^+ h^-\}} \quad (h=\pi,K,D)$$

C.-H. Chen, H.-n Li, Phys. Rev. D 69, 054002 (2004)

□ $\overline{B}{}^{0} \rightarrow D_{s(J)}K^{-}$ is especially interesting none of the final state quarks (*cuss*) are in the initial B(bd) meson.

• Expect $R_{\rm h} \sim 1$ for $c\bar{s}$ and $R_{\rm h} \sim 0.1$ for $c\bar{s}u\bar{u}$

$ar{B^0} ightarrow X + Y$	$X = \{D^+_s o \operatorname{All}\}$	$X = \{D_{sJ}(2317)^+ o D_s^+ \pi^0\}$	$X=\{D_{sJ}(2460)^+ o D_s^+\gamma\}$
$h=K^-$	$(3.8 \pm 1.3) imes 10^{-5}$	$(3.3\pm0.6\pm0.7) imes10^{-5}$	$(0.4\pm0.15^{+0.12}_{-0.11}) imes10^{-5}$
$h = D^-$	$(8.0 \pm 3.0) imes 10^{-3}$	$(1.1\pm 0.4) imes 10^{-3}$	$(8.1^{+2.8}_{-2.5}) imes10^{-4}$
350 fb-1 hep-ex/0507064			
$\rightarrow R_{K} \sim R_{D} \sim 1$ (no clear evidence for $c\bar{s}d\bar{d}$)			PRL 93, 181801 113 fb-1

IHEP, Beijing, China, June 5-7, 2006

Doubly Cabbibo Suppressed Decays

First measurement of $\frac{\Gamma(D^+ \to K^+ \pi^0)}{\Gamma(D^+ \to \text{all})}$ (CLEO 1990 < 0.04%)

Measured rate relative to $D^+ \rightarrow K^- \pi^+ \pi^+$

then used average of PDG and recent CLEO measurement for this rate.

Doubly Cabbibo Suppressed Decays

Naïve, exact SU(3):

- SU(3) predictions are oversimplified:
- First ratio affected by K_s-K_L interference
- D⁺ → K⁺π⁰ can also proceed by W-exchange or annihilation diagrams.

→ Measurements are challenging

Results still not well understood.

Wrong Sign *D*⁰ Decays

□ Time-integrated rates can be compared with $\tan^4 \theta_c = (0.281 \text{ § } 0.006) \times 10^{-2}$

Despite high backgrounds, measurements at few % level (BaBar tags other side)

	$rac{\Gamma(D^0 ightarrow K^+ \pi^-)}{\Gamma(D^0 ightarrow K^- \pi^+)}$	$rac{\Gamma(D^0 ightarrow K^+ \pi^- \pi^0)}{\Gamma(D^0 ightarrow K^- \pi^+ \pi^0)}$	$\frac{\Gamma(D^0 \to K^+ \pi^- \pi^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+ \pi^- \pi^+)}$
BaBar (%)	_	$0.214 \pm 0.008 \pm 0.008$	—
Belle (%)	—	$0.229 \pm 0.015^{+0.013}_{-0.009}$	$0.320 \pm 0.018^{+0.015}_{-0.013}$
PDG (%)	0.362 ± 0.029	$0.43^{+0.11}_{-0.10}\pm0.07$	0.42 ± 0.13

- → Belle/BaBar agreement excellent
- → big improvement over PDG values

229 fb⁻¹

PRELIMINARY

- D^* tagging allows measurement of *CP* asymmetries Belle: $K^+2\pi$ (-0.006 § 0.053); $K^+3\pi$ (-0.018 § 0.044) consistent with zero.
 - → any new physics at level much smaller than DCS for "wrong sign" decays.

$\Gamma(D_{(s)}^* \rightarrow D_{(s)}\pi^0)/\Gamma(D_{(s)}^* \rightarrow D_{(s)}\gamma)$

• BaBar has improved measurements of the π^0/γ ratios:

IHEP, Beijing, China, June 5-7, 2006

Summary

- B Factories provide a very clean environment for the production of all charm hadrons
 - \rightarrow new particle paradise !
 - \rightarrow BUT no doubly charmed baryons
- Large (and growing) samples of charm mesons and baryons are likely to complement results from τ-charm facilities for some time to come
- In several ways, we are learning how information on systems to which charm hadrons, or B mesons, decay can be extracted
- There is a large and enthusiastic community anxious to work on all aspects of the physics available.

Back up Slides

IHEP, Beijing, China, June 5-7, 2006

Precision Measurement of Λ_c Mass

- Important measurement
 - most charm baryon masses measured relative to this
- Method:
 - Choose decay modes with small Qvalue/large BR:
 - $\Lambda_{c} \rightarrow \Lambda K^{+}K_{s}^{0} \text{ and } \Sigma^{0}K^{+}K_{s}^{0}$
 - Estimate / adjust major systematic uncertainties in:
 - Material audit determine A and K⁰ mass vs. decay path length
 - Magnetic field determine A and K⁰ mass vs. momentum in lab.
- Much larger control samples:
 - $\Lambda_c^+ \to \rho K^- \pi^+$ 1.5 x 10⁶ evs.
 - $\Lambda_c^+ \rightarrow \rho K^0$ 2.4 x 10⁵ evs.

IHEP, Beijing, China, June 5-7, 2006

Results

$\Lambda_{c} \rightarrow \Lambda K^{+} K_{s}^{0}$	2286.501 0.041 (stat.) 0.144 (syst.)
$\Lambda_{\rm c} \rightarrow \Sigma^0 K^+ K_{\rm s}^{0}$	2286.303 0.181 (stat.) 0.126 (syst.) Large Q
$\Lambda_{c} \rightarrow pK^{-}\pi^{+}$	2286.393 0.018 (stat.) 0.447 (syst.)
$\Lambda_{c} \rightarrow \rho K_{s}^{0}$	2286.361 0.034 (stat.) 0.428 (syst.)

Combined measurement :

$$m(\Lambda_c) = 2286.46 \pm 0.14 \text{ MeV/c}^2$$

- Most precise measurement of charm mass to date
- Approximately 4 x more precise than

Current PDG value: 2284.9 0.6 MeV/c² and about 2.5 σ higher

Charm Baryon States

• Most massive in PDG 2005 is Ξ_c (2815)

CLEO 2 has added $\Lambda_c(2880)$ and $\Lambda_c(2765)$

IHEP, Beijing, China, June 5-7, 2006

New Σ_c (2800) Triplet

Could be $J^{P} = 3/2^{-} \Sigma_{c2}$??

State	Yield $/10^3$	$\Delta M, \ \mathrm{MeV}/c^2$	Γ , MeV
$\Sigma_{c}(2800)^{0}$	$2.24^{+0.79}_{-0.55}{}^{+1.03}_{-0.50}$	$515.4^{+3.2}_{-3.1}{}^{+2.1}_{-6.0}$	$61^{+18}_{-13}{}^{+22}_{-13}$
$\Sigma_{c}(2800)^{+}$	$1.54^{+1.05}_{-0.57}{}^{+1.40}_{-0.88}$	$505.4^{+5.8}_{-4.6}^{+12.4}_{-2.0}$	62^{+37+52}_{-23-38}
$\Sigma_c(2800)^{++}$	$2.81^{+0.82}_{-0.60}{}^{+0.71}_{-0.49}$	$514.5^{+3.4}_{-3.1}{}^{+2.8}_{-4.9}$	$75^{+18}_{-13}{}^{+12}_{-11}$

IHEP, Beijing, China, June 5-7, 2006

Charmed Meson Spectroscopy pre 2003

IHEP, Beijing, China, June 5-7, 2006

Charmed Meson Spectroscopy Now

IHEP, Beijing, China, June 5-7, 2006

$D_{sJ}^{*}(2317)^{+}\rightarrow D_{s}^{+}\pi^{0}$

IHEP, Beijing, China, June 5-7, 2006

Update on Charmed-Strange Mesons $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2460)^{+}$

New, comprehensive study of decays to D_s^+ plus one or two π^{\pm} , π^0 , or γ 's

Decay pattern if J^P=0⁺ and J^P=1⁺, respectively

	Decay Channel	$D_{sJ}^{*}(2317)^{+}$	$D_{sJ}(2460)^+$
	$D_s^+ \pi^0$	Seen	Forbidden
	$D_s^+\gamma$	Forbidden	Seen
$D_{s}^{+}\pi^{0}$ only decay	$D_s^+ \pi^0 \gamma$ (a)	Allowed	Allowed
mode observed	$D_s^*(2112)^+\pi^0$	Forbidden	Seen
for D _{sJ} *(2317)+	$D_{sJ}^{*}(2317)^{+}\gamma$		Allowed
	$D_s^+ \pi^0 \pi^0$	Forbidden	Allowed
	$D_s^+ \gamma \gamma$ (a)	Allowed	Allowed
	<u>$D_{s}^{*}(2112)^{+}\gamma$</u>	Allowed	Allowed
	$D_{s}^{+}\pi^{+}\pi^{-}$	Forbidden	Seen
	(a) Non-resonant only		
222 fbd ban	x/0004020	NB: all "Seen" m	odes are also "Allowed"
Z32 TD ⁻¹ nep-			

*D*_{sJ}* Update:

- From $D_{sJ}^*(2317)^+ \rightarrow D_s^+ \pi^0$:
- □ From $D_{sJ}^*(2460)^+ \rightarrow D_s^+ \gamma$, $D_s^+ \pi^0 \gamma$:

m = $(2319.6 \pm 0.2 \pm 1.4)$ MeV/c² $\Gamma < 3.8$ MeV @ 95% CL

$B(D,(2460)^{+} \rightarrow D^{+}\gamma)$	
$\sum_{s,j} (2 \cdot s)^{j} + 2 \cdot s^{j} + 2 \cdot s^{j}$	$- = 0.337 \pm 0.036 \pm 0.038$
D(D (0 + 0) + 0)	$ = 0.557 \pm 0.050 \pm 0.050 $
$B(D_{1}(2460)) \rightarrow D_{1}\pi^{2}\gamma$	

IHEP, Beijing, China, June 5-7, 2006

B Decays - Absolute Branching Fractions

- □ $B\overline{B}$ sample with one *B* fully reconstructed decays of the other $B \rightarrow D^{(*)+,0} X$
 - Observe D_{s^+} and $D_{s,f}(2460)$ signals in the recoil mass, m_{χ}
- □ → absolute BF's for D_s^+ (→ $\phi \pi^+$) and for D_{sJ}^* (2460)⁺

IHEP, Beijing, China, June 5-7, 2006

Brian Meadows, U. Cincinnati

D_{sJ}(2460)⁺ Absolute BFs, cont.

- □ For the D_s^+ signal: $\mathcal{B}(D_s^+ \to \phi \pi^+ = (4.62 \pm 0.36 \pm 0.50) \%$
- Combine with previous measurements

113 fb⁻¹ PRL 93, 181801 (2004)

DG: (4.3 1.2)

 $\frac{\mathcal{B}[B \to D^{(*)}D^*_{sJ}(2460)^+] \times \mathcal{B}[D^*_{sJ}(2460)^+ \to D^+_s \gamma]}{\mathcal{B}[B \to D^{(*)}D^*_{sJ}(2460)^+] \times \mathcal{B}[D^*_{sJ}(2460)^+ \to D^*_s(2112)^+ \pi^0]} = 0.274 \pm 0.045 \pm 0.020$ $(D^{*+}_s \to D^+_s \gamma)$

to obtain absolute BFs:

$$egin{array}{rll} \mathcal{B}[D^*_{sJ}(2460)^+ &
ightarrow D^*_s(2112)^+ \pi^0] &=& (0.56 \pm 0.13 \pm 0.09) \ \% \ \mathcal{B}[D^*_{sJ}(2460)^+ &
ightarrow D^+_s \gamma] &=& (0.16 \pm 0.04 \pm 0.03) \ \% \ \mathcal{B}[D^*_{sJ}(2460)^+ &
ightarrow D^+_s \pi^+ \pi^-] &=& (0.04 \pm 0.01) \ \% \end{array}$$

Sum of known BFs: 0.76±0.20 Is there another mode?

B→D $D_{sJ}^{*}(2317)^{+}, D_{sJ}^{*}(2317)^{+} \rightarrow D_{s}^{+}\pi^{0}$

Belle: 274M B<u>B</u> BELLE-CONF-0461 (2004)

$B \rightarrow D D_{sJ} (2460)^+$

