Proton Form Factors and related processes in *BABAR* by ISR

Rinaldo Baldini Ferroli

Centro Studi e Ricerche Enrico Fermi, Roma, Italy INFN Laboratori Nazionali di Frascati, Frascati, Italy

International Workshop on Tau-Charm Physics

June 05-07, 2006 Beijing, China

Outline

- BABAR measurement of $e^+e^- o p\overline{p}$ by ISR
- Definitions and main properties of Nucleon FF
- Nucleon FF revival: space-like G_E/G_M
- Time-like G_E/G_M
- Sharp drops in $\sigma(e^+e^- \to p\overline{p})$ and in the FF at the $p\overline{p}$ threshold
- Drops and dips at $p\bar{p}$ threshold in related processes
- Coulomb corrections and the $e^+e^- \to n\overline{n}, \ e^+e^- \to \Lambda\overline{\Lambda}$ puzzle
- Conclusions and perspectives

B-factory PEPII@SLAC

I.S.R. main features

$$\frac{d\sigma_{e^+e^-\to p\overline{p}\gamma}}{d\cos\theta_{\gamma}^*}(w) = \frac{dx}{x}A(s,x,\theta_{\gamma}^*)\sigma_0(w)$$

$$w = p\overline{p}$$
 invariant mass $= q\sqrt{1-x}$, $x = 2E_{\gamma}^*/q$

$$A(s,x,\theta_{\gamma}^*) = \frac{\alpha}{\pi} \left(\frac{2-2x+x^2}{\sin^2\theta_{\gamma}^*} - \frac{x^2}{2} \right) \qquad \theta_{\gamma}^* \gg \frac{m_{\rm e}}{q} \ \ \text{in e}^+ \, \text{e}^- \, \text{c.m.}$$

for $\theta_{\gamma}^* >$ 20° I.S.R. Angular Acceptance \approx 15%

ISR γ detected $\Longrightarrow \gamma \gamma$ interactions killed

I.S.R. versus c.m.

Advantages

- All \mathbf{q} at the same time \Longrightarrow Better control on systematics
- c.m. boost \Longrightarrow at threshold $\epsilon \neq \mathbf{0} + \sigma_{W} \sim \mathbf{1}$ MeV
- Detected ISR $\gamma \Longrightarrow$ full $p\overline{p}$ angular coverage

Drawbacks

- $\mathcal{L} \propto$ invariant mass bin Δw
- More background

Mass resolution

Incredibly good at threshold (\sim 1 MeV), as e^+e^- c.m.

Events selection

- Analyzed 232 fb⁻¹
- I.S.R. simulation:
 - **9** 20° $<\theta_{\gamma}^{*}<$ 160° (H. Czyz *et al.*, Eur. Phys. J. C35 (2004) 527)
 - Soft photons (M. Caffo et al., N. C. 110A (1997) 515)
- Event selection:
 - Tracks within DHC and DIRC acceptance
 - ullet Very tight proton selector $\sim~30\%$ good events loss
 - $ightharpoonup p\overline{p}\gamma$ kinematical fit
 - E_{γ} resolution not reproduced \Longrightarrow 3C fit
 - $\epsilon \sim$ 18 \pm 1 %
- 4025 selected events

$p\overline{p}$ events background

 $e^+e^-
ightarrow p\overline{p}\pi^0$

 229 ± 32 estimated

 $M_{pp} > 4 \; GeV$ $p\overline{p}$ signal is overwhelmed

Background Summary

Space-like and time-like regions

Nucleon form factors and cross sections

Nucleon current operator (Dirac & Pauli)

$$\Gamma^{\mu}(q) = \gamma^{\mu} F_1(q^2) + \frac{i}{2M_N} \sigma^{\mu\nu} q_{\nu} F_2(q^2)$$

Electric and Magnetic Form Factors

$$G_E(q^2) = F_1(q^2) + \tau F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

$$\tau = \frac{q^2}{4M_N^2}$$

Elastic scattering

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 E_{\rm e}' \cos^2\frac{\theta}{2}}{4 E_{\rm e}^3 \sin^4\frac{\theta}{2}} \left[G_{\rm E}^2 + \tau \left(1 + 2(1+\tau) \tan^2\frac{\theta}{2} \right) G_{\rm M}^2 \right] \frac{1}{1+\tau} \label{eq:dsigma}$$

Annihilation

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \sqrt{1 - 1/\tau}}{4\sigma^2} C \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right]$$

Analyticity of the nucleon form factors

Space-like G_F^{ρ}/G_M^{ρ} measurements

Space-like G_F^p/G_M^p measurements

Space-like G_F^p/G_M^p measurements

BABAR $e^+e^- o p\overline{p}$

new results

by means of Initial State Radiation

Angular distributions

Time-like $|G_F^p/G_M^p|$ measurements

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2\beta\mathbf{C}}{2q^2} |\mathbf{G}_{M}^{p}|^2 \left[(1+\cos^2\theta) + \frac{4M_{p}^2}{q^2\mu_{p}} \sin^2\theta |\mathbf{R}|^2 \right]$$

Dispersive analysis of G_E/G_M (Eur. Phys. J. **C46** (2006) 421)

$\sigma({ m e^+e^-} ightarrow { ho}\overline{ ho}\gamma)$

Time-like $|G_M^p|$ measurements

Coulomb correction

$J/\Psi \rightarrow \gamma p \overline{p}$ by BES

Steep behaviour at threshold also seen in other processes with different quantum numbers

BES $J/\Psi o \gamma \, p \overline{p}$ BABAR $B^+ o K^+ \, p \overline{p}$ BABAR $B^0 o D^0 \, p \overline{p}$

"Baryonium" → dip in multihadronic processes

P.J. Franzini and F.J. Gilman, 1985

A vector meson V_0 ($J^{PC}=1^{--}$), with vanishing e^+e^- coupling, which decays through an intermediate broad vector meson V_1

$$A \propto \frac{1}{s - M_1^2} \left(1 + a \frac{1}{s - M_0^2} a \frac{1}{s - M_1^2} + \cdots \right)$$
$$A = \frac{s - M_0^2}{(s - M_1^2)(s - M_0^2) - a^2}$$

Dips in multihadronic reactions

M(MeV)	Γ(MeV)
~1870	10÷20
1930(30)	35(20)
1910(10)	37(13)
1880(50)	130(30)
1860(20)	160(20)
	~1870 1930(30) 1910(10) 1880(50)

Time-like $|G_M^n|$ measurements

Threshold behaviour

$$G_M^n(4M_n^2) = G_E^n(4M_n^2) = 0$$

Does BABAR agree with FENICE?

Large
$$G^{\Lambda} \stackrel{\mathsf{U-spin}}{\Longrightarrow} \text{large } G^n_M$$

Conclusions and perspectives

- lacksquare Nucleon FF Revival: unexpected space-like G_E/G_M
- BABAR:
 - $lacktriangledown G_E/G_M > 1$ just above $p\overline{p}$ threshold
 - $lue{}$ Cross section drops at $q^2 \sim 5$ and 8 GeV^2
 - Sharp drop at pp threshold
 - lacktriangle Dip at $p\overline{p}$ threshold in $e^+e^-
 ightarrow 6\pi$
- Perspectives:
 - BABAR: redoubled statistics

$$e^+e^- o n\overline{n}$$
 very difficult, but $e^+e^- o \Lambda\overline{\Lambda}$ coming soon

- τ/charm at Beijing
- Near NN threshold: VEPP2000
- DANAE (?)
- Super B-factory (?)