D_s⁺(2317), D^{*}(2308) and D_s^{+*}(2632) as candidates for tetraquarks?

Veljko Dmitrašinović

Laboratory of Physics (010), Vinča Institute of Nuclear Sciences, Belgrade, Serbia

Outline:

- Introduction: scalar D mesons
- 't Hooft interaction in the constituent quark model (CQM) Ann.Phys.321, 355 (06)
- Charm tetraquark spectrum in CQM:
 D+(2308) D_s+(2317) Mass Puzzle
 PRD70,096011 (04); PRL94,162002 (05);
- Exotic spectrum predicted MPLA21, 533 (06)
- Alternative 4Q models
- Summary

Charmed strange mesons

- Predicted spectrum in potential models:
- Two observed scalar (0+) strange states: D_s+(2317) (BaBar) and D_s+(2632) (SELEX);
- Too light and too many!?!

Charmed nonstrange mesons

- Spectrum predicted in potential models:
- Two observed scalar (0+)
 nonstrange states:
 D+(2308) (Belle),
 D+(2405) (FOCUS)
- Too light and too many!
- Strange (2317) and nonstrange (2308) states degenerate!?!

c.f. light scalar mesons

- Two isovector states (980 and 1450 MeV)!?!
- Too light and too many states!?! ("dimesons")
- Strange (1430) and nonstrange (1450) states degenerate!?!
- Supernumerary flavour singlets: glueballs!?!

Two multiquark scenarios

- Colorless: hadronic molecules, "bootstrap" models, Bethe-Salpeter equation models (v. Beveren & Rupp, Kolomeitsev & Lutz, Sassen & Krewald)
- With color d.o.f.: constituent quarks, need a model of confinement ("F.F" 2-body, 3-body force, "flip-flop")

"True" tetraquarks

- The D⁺(2308), D_s⁺(2317), D^{*}(2405), D_s⁺(2632), and X(3872) = (q^2q^{*2}) are "true tetraquarks"?
- Colour quark force important: Multiquarks related to multiple colour singlets (expected since 1976)
- "F.F" 2-body confinement model leads to the q^2q^{*2} in the colour state $\left|\overline{3}_{12}3_{34}\right\rangle$

Example of a bound two-meson state due to two-body colour potential

- Tetraquarks bound for large enough q/q* mass ratio. [Ader, J.M. Richard and Taxil PRD25,2370('82)]
- Double-b heavy-light tetraquark mass as a function of separation. (Courtesy D. Janc)
- The hidden-colour state is confined. Saturation visible in the twomeson state.

Effect of three-quark colour force on doublecharm tetraquarks (D. Janc)

Hyperfine interactions in the CQM

- The "color-magnetic" CS (Fermi-Breit) interaction believed to be the main source of SU(6) multiplet splittings in CQM.
- CS HFI cannot solve the " $U_A(1)$ problem" in mesons (and lesser problems in baryons).
- The 't Hooft interaction solves the $U_A(1)$ problem, and improves baryon spectra.
- "Calibrate" HFI in mesons and baryons, then use it in multiquarks Ann. Phys. 321, 355 (06)

Instanton-induced 't Hooft interaction in QCD

- Instantons induce a new three-quark, flavour-dependent, contact interaction
- Closing one pair of "legs" leads to a two-quark HF interaction that depends on flavour and spin.

The two-body 't Hooft interaction leads to the following two-quark potential

$$V_{12} = 4K\langle \bar{q}q \rangle_0 P_{12}^{\bar{3}} \left(1 - \vec{\sigma}_1 \cdot \vec{\sigma}_2\right) \delta(\mathbf{r}_1 - \mathbf{r}_2)$$

$$P_{12}^{\bar{3}} = \left[\frac{1}{3} - \frac{1}{4} \lambda_1 \cdot \lambda_2\right]. \tag{2}$$

affects only spin singlets (PS mesons) and cures the $U_A(1)$ problem.

The 't Hooft interaction also leads to the threequark potential

$$V_{123} = 12KP_{123}^1 \left(1 - \sum_{i < j}^3 \vec{\sigma}_i \cdot \vec{\sigma}_j\right) \delta(\mathbf{r}_1 - \mathbf{r}_2) \delta(\mathbf{r}_3 - \mathbf{r}_2)$$

$$P_{123}^{1} = \frac{1}{12} \left[\frac{4}{9} - \frac{1}{3} \sum_{i < j}^{3} \lambda_{i} \cdot \lambda_{j} + d^{abc} \lambda_{1}^{a} \lambda_{2}^{b} \lambda_{3}^{c} \right]. \tag{3}$$

Light mesons with 't Hooft interaction

- Vector and pseudoscalars
- Only p.s. change mass
- Vector mesons still ideally mixed.
- Correct ordering of states
- Only the pion (still) too heavy (non-relativistic).

Ann.Phys.321, 355 (06)

Single-charm tetraquark SU(3) contents

- Tetraquark SU(3) C.G. series: two 3*-, 6-, 15*-plets. V.D. PRD70,096011 (2004)
- The two 3*-plets and the "inner" triplet in the 15*-plet may mix!

$$\overline{3} \times \overline{3} \times 3 = \overline{3}_A + \overline{3}_S + 6 + \overline{15}$$

V. Dmitrasinovic

Single-charm tetraquark masses

- 't Hooft interaction breaks degeneracy.
- SU(3) symmetry breaking s-u/d quark mass difference adds to the splitting.

PRD70,096011 (2004)

$\overline{3}_S - \overline{15}$ mixing

- Symmetric 3*-plet mixes with the 15*-plet
- Mixing splits the two states
- Lowest mass is the asymm. 3*-plet

$D^{+}(2308) - D_{s}^{+}(2317)$ Mass Puzzle I

- All members of the antisymmetric 3*plet and 6-plet are degenerate
 irrespective of their strangeness!
 PRL94,162002 (2005)
- Hidden strangeness in flavour w.f.

$$\left| D_{n3A} \right\rangle = \frac{1}{2} \left| c(s(us - \overline{su}) - d(\overline{du} - \overline{ud})) \right\rangle$$

$$\left| D_{s3A} \right\rangle = \frac{1}{2} \left| c(u(\overline{us} - \overline{su}) - d(\overline{ds} - \overline{sd})) \right\rangle$$

D⁺(2308) - D_s⁺(2317) Mass Puzzle II

- Explains the degeneracy of $D^+(2308)$ and $D_s^+(2317)$. PRL94,162002 (2005)
- This mass pattern is due to the SU(3) flavour wave function permutation antisymmetry.
- Such multiplets exist only in multiquarks: the first and the simplest are found in tetraquarks!
- Similar to $a_0(1450) K_0^*(1430)$ degeneracy in light scalars.

Exotic tetraquark mass predictions

	D_{sJ}^+	D_J^+	$D^0_{s^*J}$	D_{sJ}^{++}	D_{ssJ}^+	$D_J^{\scriptscriptstyle ++}$
$\bar{3}_A$	2317	2317	_	_	_	-
6	2724	2724	2724	2724	_	_
<u>15</u>	2632	2561	2520	2520	2657	2383
$\bar{3}_{S}$	3437	3224	_	-	_	-

[•]Many exotic states, most of them within exptl reach of Belle and BaBar

Alternative models of tetraquarks

- Terasaki assumes CS HFI; that leads to $D_s^+(2317)$ being not an isosinglet, but an isotriplet! He predicts degenerate iso-partners.
- 't Hooft HFI also leads to isotriplets, and many other exotics, but at higher masses.
- Model independent searches for exotica at present accelerators suggested by Cheng&Hou, PLB566, 193 ('03). Only one exp. search so far (CDF).

Search for isotriplet D_{sJ} mesons

- M. Shapiro (CDF) has conducted a search for isopartners of D_s⁺(2317) eConfC030603:MAR06,2003
- without success: no visible structure in the isotriplet spectra (lower figures)
- descriptive: not a quantitative measure of isopartners' absence.

Decays as tetraquark signature?

- Two kinds of decays measured so far (still incomplete): hadronic and EM.
- $D_s^+(2317)$ is very narrow due isospin conservation: main hadronic decay channel ($D_s^+(1969)$ π^0) violates isospin.
- Other predicted tetraquarks should be wider due to their being above the allowed decay thresholds.
- D_s⁺(2632) partial decays indicate unusual flavour multiplet (15-plet?) that exists only in tetraquarks.Liu et al.PRD70, 094009,2004
- $B \longrightarrow D_s + D_s$ decays in agreement with tetraquark assumption.
- Most EM decays of $D_s^+(2317)$ consistent with cs content, however.

Summary and outlook

- One antitriplet: [D_s+(2317) (BaBar), D+(2308)(Belle)] might be tetraquarks lowered in mass due to KKMT interaction.
- Small strange-nonstrange meson mass difference D_s+(2317) - D+(2308) is a "smoking gun" evidence for tetraquark structure!
- Another antitriplet: [D+(2405) (FOCUS), D_s+(2632) (SELEX)] might be a mixture of cq bar and tetraquark
- D_s⁺(2632) partial decays indicate unusual flavour multiplet (15-plet?) that exists only in tetraquarks.
- Models predict many exotic tetraquarks. Experiment?
- Many theoretical uncertainties

Outlook: theoretical uncertainties in multiquark calculations

- Colour confining dynamics
- Hyperfine interactions
- Relativity
- Chiral symmetry
- Dynamical pair production

Colour in Multiquarks

- Color interactions must confine quarks.
- Confinement must not act between quarks in two separate color singlets ("color saturation"), except perhaps for the v.d. Waals force.
- There are multiple color singlets and the interactions mix them. Color singlet eigenstates are mixtures that depend on the spatial separation.
- All color singlets ought to be stable, as all of them may be admixed. All color eigenstates ought to be observable: new ("hidden color") hadrons.

Modelling Confinement

Two-body interaction

$$V(r_{ij}) = \frac{1}{4} \sum_{a=1\dots8} \lambda_i^a \lambda_j^a v(r_{ij}) \equiv (F_i \cdot F_j) v(r_{ij})$$

• with the "saturating" colour factor has been used.

$$(F_i \cdot F_j)$$

- "Saturation" of color forces = no confining forces between colour singlets (modulo v.d. Waals force)
- Lorentz *vector* confining int.: all c. singlets stable.
- Lorentz scalar confining int.: some c. singlets unstable!

Tetraquark colour states

- Color quark interactions mix the two colour singlets
- One state turns into two mesons at asymptotic distances; another is a confined hidden-colour (hc) tetraquark state.
- Diagonal states are orthogonal: h.c. state cannot decay into two mesons.
- No physical process in the NRCQM can turn one c. eigenstate into another. Need annihilation processes (relativity).

$$|1_{13}1_{24}\rangle = \cos\theta |\overline{3}_{12}3_{34}\rangle + \sin\theta |6_{12}\overline{6}_{34}\rangle |8_{13}8_{24}\rangle = -\sin\theta |\overline{3}_{12}3_{34}\rangle + \cos\theta |6_{12}\overline{6}_{34}\rangle$$

Three-body force: stability and saturation

- A "saturating" three-body force has been introduced, V.D. PLB499,136 (2001)
- Two scenarios: (a) Allow all color states, demand that color 8, 10 be heavy; (b) Forbid all non-singlets
- Scenario (a) demands 3-, 4-,5-body forces etc.; (b) allows only dominant 2-body and a weak 3-body.
- PRD 67, 114007 (03).

$$V \to V + V_{3b}$$

$$V_{3b}(\vec{r}_i, \vec{r}_j, \vec{r}_k) = \frac{1}{8} d^{abc} \lambda_i^a \lambda_j^b \lambda_k^c U_0 \exp[-(r_i^2 + r_j^2 + r_k^2)/a_0]$$

Three-quark colour force in tetraquarks

- Saturation: mixes states in the asymptotic basis, but changes only the hidden-colour state energy
- Does not mix states in the Pauli basis, but changes their energies. Unstable. PRD 67, 114007 (03).

$$\frac{1}{8} \langle d^{abc} \lambda_i^a \lambda_j^b \lambda_k^c \rangle$$

	1 ₁₂ 1 ₃₄	8 ₁₂ 8 ₃₄	3 ₁₃ 3 ₂₄	6 ₁₃ 6 ₂₄
$1_{12}1_{34}$	0	$-5\sqrt{2}/18$	$5/(9\sqrt{3})$	$-5\sqrt{2}/(18\sqrt{3})$
8 ₁₂ 8 ₃₄	$-5\sqrt{2}/18$	5/18	$-5\sqrt{2}/(9\sqrt{3})$	$-5/(18\sqrt{3})$
3 ₁₃ 3 ₂₄	$5/(9\sqrt{3})$	$-5\sqrt{2}/(9\sqrt{3})$	5/9	0
6 ₁₃ 6 ₂₄	$-5\sqrt{2}/(18\sqrt{2})$	$\sqrt{3}$) -5/(18 $\sqrt{3}$)	0	-5/18

Effects of three-quark colour force on doublecharm tetraquarks (D. Janc)

Summary of color in tetraquarks

- Two-body color-color force allows asymptotic separation of two mesons: L. vector induces the smallest v.d.Waals force.
- Three-body force induces even stronger mixing and v.d.Waals force.
- L. scalar prefered by P-wave hadron spectroscopy: unstable baryon.
- Add three-quark to L. scalar so as to stabilize the baryon: find too large v.d.Waals force
- The only simple solution is L. vector plus weak short-range three-quark force.

Flip-flop model: stability and saturation?

- A "QCD-inspired" model of confinement based on the concept of colour flux tubes.
- Color factors are not given in this model: arbitrary!
- Open questions: (a) does this model "saturate"?
 (b) are all color-singlets stable? Nobody knows!
- This scenario implies multi-quark (3-, 4-,5-body) forces: are there multiquark bound states?
- Ill-defined model, leave it for the future.