"I Know She Invented Fire -- but What Has She Done Lately?" --On the Future of Charm Studies

Ikaros Bigi Notre Dame du Lac

Common feeling: charm physics -- great past, no future!)

- drove paradigm shift: quarks as real entities essential support for acceptance of QCD
- $\rightarrow \bullet \bullet$ electroweak SM phenomenolgy for $\Delta C \neq 0$ `dull'
 - CKM parameters `known'
 - D⁰ D⁰ oscillations very slow
 - CP very small

loop driven decays extremely rare with huge LD bkg.

Charm a closed chapter?

My intention

`I have come to praise C. -- not to bury it!'

charm dynamics full of challenges -- & promises triple motivation for *further dedicated* studies

- QCD (& `beyond'): understanding nonperturb. dynamics & establishing theoretical control over it
- B dynamics: calibrating theoret. tools for B studies
- 8 New Physics: charm transitions a novel window onto New Physics

accuracy of theoretical description of essential importance!

3 basic tenets

 none of the novel successes of the SM weaken the case for New Physics -- presumably around the TeV scale

to learn the salient features of this New Physics we must study its impact on heavy flavour transitions -- even if there is none observable

CP studies `instrumentalized' to analyze this New Physics

we cannot count on numerically massive impact of this New Physics

- 🗕 need
 - 🔊 precise
 - \land reliable

comprehensive (i.e. search also in unorthodox places) studies experimentally & theoretically

The Menu

Ι

LHCb, Super-B fact. (?)

The `Guaranteed Profit': Lessons on QCD `Tooling up' for B Studies

II `The Best might still be ahead' Searching for New Physics Uniqueness of Charm

III Conclusions & Outlook

Recent Reviews

G. Burdman, E. Golowich, JA. Hewett, S. Pakvasa: "Rare Charm Decays in the SM & Beyond", Phys. Rev. D66, 47 pages

S. Bianco, F. Fabbri, D. Benson, I. Bigi: "A Cicerone for the Physics of Charm", La Rivista del Nuovo Cimento, 26, # 7-8 (2003), ~ 200 pages

G. Burdman, I. Shipsey, "DO - DO Mixing and Rare Charm Decays", Ann.Rev.Nucl.Part.Sci. 53(2003), 68 pages numbers for rare decays!

▲ I. Bigi: "I have come to praise Charm, not bury it", hepph/0412041

BESIII Charm Physics Book, to appear in 2006

Issue at stake: *not* QCD as theory of the strong forces, but our ability to perform calculations

`charm: a bridge between bona fide heavy & light flavours'

accumulated evidence: charm `mostly somewhat' heavy

Non-Rel. Quark Models still useful tool for training intuition & as diagnostics of results from sum rules & LQCD -- but not good enough for final answers

• HQE: expansion in $1/m_{Q}$ Ifetime ratios: a posteriori works!

- ➡ Light Cone Sum Rules $\mathfrak{S} \quad \mathsf{D} \to \mathsf{I} \nu \pi, \rho$: a posteriori fails!
- Lattice QCD: only theoretical technology with promise for truly quantit. treatment of charm hadrons with ability for systematic improvement
 - only Lattice QCD can approach it from below and above \bigcirc
 - monopoly of theoretical technology?

I.B. (Marbella '93):

"A tau-charm factory is the QCD machine for the 1990's!" Yet: threshold for significance much higher in the 2000's! 8 predictions to be confronted with comprehensive high quality data obtained in a timely fashion from CLEO-c,BELLE/BABAR & BES III

⁄ Caveat:

even if $f_D|_{exp} = f_D|_{LQCD} \pm 0.1 \%$ cannot conclude universal theor. uncertainty $\leq 1 \%$!

need
$$f_D$$
, $f_{D(s)}$, FF for D+/D⁰ \rightarrow l v [S=-1]/[S=0]
 $D_s \rightarrow$ l v [S=0]/[S=+1]

charmonium studies → lessons on quarkonia not on open flavour hadrons

Is Charm Heavy? -- or: the HQE in Inclusive H_c Decays

- $\label{eq:mc} \hline \mathbf{m}_c(\mathbf{m}_c) = \left\{ \begin{array}{ll} 1.19 \pm 0.11 \ \ \text{GeV} & \text{charmonium sum rules I} \\ 1.30 \pm 0.03 \ \ \text{GeV} & \text{charmonium sum rules II} \\ 1.18 \pm 0.08 \ \ \text{GeV} & \text{moments of SL B decays} \end{array} \right.$
 - $\mu_{\text{nonpert.}} \approx \Lambda \sim 600 800 \text{ MeV} \sim N_{C} \Lambda_{\text{QCD}}$
 - \bullet consistent determinations of m_c
 - charm somewhat heavy
- indirect supporting evidence

 $B \rightarrow I_V D/D^*$ make up ~ 2/3 of $B \rightarrow I_V X_c$

 $\tau(D^{+})/\tau(\Omega_{c}^{0}) \sim 14 >> 1!$

12

	1/m _c expectations	theory comment	data
τ(D⁺)/ τ(D ⁰)	$\sim 1 + (f_D/200 \text{ MeV})^2 \sim 2.4$	PI dominant	2.54 ± 0.01
$\tau(D_s)/\tau(D^0)$	1.0 - 1.07	without WA	
	0.9 - 1.3	with WA	1.22 ± 0.02
$\tau(\Lambda_{c}^{+})/\tau(D^{0})$	~ 0.5	Quark Model ME	0.49 ± 0.01
$\tau(\Xi_{c}^{+})/\tau(\Lambda_{c}^{+})$	~ 1.3 - 1.7	**	2.2 ± 0.1
$\tau(\Lambda_c^+)/\tau(\Xi_c^0)$	~ 1.6 - 2.2	**	2.0 ± 0.4
$\tau(\Xi_c^+)/\tau(\Xi_c^0)$	~2.8	"	4.5 ± 0.9
$\tau(\Xi_{c}^{+})/\tau(\Omega_{c}^{0})$	~ 4	"	5.8 ± 0.9
$\tau(\Xi_c^0)/\tau(\Omega_c)$	~ 1.4	**	1.42 ± 0.14

$\Rightarrow \tau(\mathsf{D}^+) > \tau(\mathsf{D}^0) \sim \tau(\mathsf{D}_s) \geq \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

Success in describing observed lifetime ratios one of the best confirmations for charm being a heavy quark whenever leading nonperturb. contributions ~ $O(1/m_Q^2)$

 SELEX has reported candidates for weakly decaying double-charm baryons

my judgement:

Infetimes of candidates too short without expected hierarchy If SELEX' interpretation correct, then successful description of single charm lifetimes a misleading accident!

Spectroscopy of Open Charm Hadrons

general lesson:

we need to understand charm spectroscopy

- ➡ to extract a precise value for V(cb) [& V(ub)] and
- search for right-handed charged currents of b quarks
 [if V(cb)|_{incl} & V(cb)|_{excl} inconsistent

right-handed currents!]

Semileptonic D Decays

 \mathcal{CP} in $\mathbb{B}_d \to \phi \ \mathbb{K}_S$ vs. rate of $\mathbb{B} \to \gamma \ \mathbb{X}_s$ What if $\gamma = \gamma_{\mathbb{R}} \neq \gamma^{SM} = \gamma_{\mathbb{L}}$?

Can infer γ polarization from $B \rightarrow \gamma K\pi\pi$

Yet need to understand $K\pi\pi$ system around 1400 MeV --

can be analyzed in $D \rightarrow I \nu K\pi\pi !$

(Time dependent) Dalitz Plots

 \mathcal{P} in $B_d \rightarrow 3$ kaons

Learn about hadronization effects from

Dalitz analysis of $D \rightarrow 3$ kaons

II Searching for New Physics

- 2 kinds of research:
- `hypothesis-driven' vs. `hypothesis-generating' research
- first kind very important -- & favoured by funding agencies
- yet `thinking outside the box' crucial
- B physics is `hypothesis-driven'
- ➡ yet charm dynamics:
 - charm spectroscopy led to recent renaissance in
 - `hypothesis-generating' QCD
 - best long-term motivation:
 - `hypothesis-generating' search for New Physics

- New Physics scenarios in general induce FIChNC
- their couplings could be substantially stronger for Up-type than for Down-type quarks

(actually happens in some models which `brush the dirt of FIChNC in the down-type sector under rug of the up-type sector)

> If baseball teams from Boston & Chicago can win the World Series in two successive years
> -- overcoming curses having lasted > 80 years -then charm decays can reveal New Physics.'

up-type quarks: u c t

only up-type quark allowing full range of probes for New Phys.
 rop quarks do not hadronize → no T⁰ - T⁰ oscillations hadronization while hard to force under theor. control enhances observability of *CP* up quarks: no π⁰-π⁰ oscillations possible CP asymmetries basically ruled out by CPT basic contention:

charm transitions are a unique portal for obtaining a novel access to flavour dynamics with the experimental situation being a priori favourable (apart from absence of Cabibbo suppression)!

(2.1) `Inconclusive' D⁰ - D⁰ Oscillations

- © fascinating quantum mechanical phenomenon
- ambiguous probe for New Physics (=NP)
- important ingredient for NP CP asymm. in D⁰ decays

$$x_{\rm D} = \frac{\Delta m_D}{\Gamma_D}$$
 $y_{\rm D} = \frac{\Delta \Gamma_D}{2\Gamma_D}$

 \rightarrow conservative bound: $x_D, y_D \sim O(0.01)$

"game" has just begun! 🖛

Personal comment: the (in)famous `Nelson plot' on theoret. predictions was witty & an appropriate reminder for theorists to use some common sense -- but should be retired now with honour! 19

systematic analysis based on Operator Product Expansion

expansion in powers of 1/m_c, m_s, KM (Uraltsev,IB,Nucl.Phys.B592('01))

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe! 3 contributions from higher-dimensional operators with a very gentle GIM factor ~ m_s/μ_{had} ... due to condensates in the OPE!

 $m_{s}^{2}\mu_{had}^{4}/m_{c}^{6}(vs. m_{s}^{4}/m_{c}^{4})$

power counting in $1/m_c$ can be quite iffy

 $x_{D}(SM)|_{OPE}, y_{D}(SM)|_{OPE} \sim O(10^{-3})$

unlikely uncertainties can be reduced

another analysis very different in spirit performed by

A. Falk et al., Phys. Rev. D65 (`02)

🚈 yields similar numbers

 crucial distinction in question:
 "What is the most likely value of x_D & y_D within the SM?" O (10⁻³) ! vs.
 "How large could x_D & y_D conceivably be within the SM?" Cannot rule out 10⁻²!

sobering lesson: case for New Physics based on x_D uncertain!

search for *C* in D⁰-D⁰ oscillations

definitive measurement still desirable: X_D, y_D down to 0.001

(2.2) \mathcal{C}^{P} with & without $D^{0} - \overline{D}^{0}$ Oscillations

- ☺ baryon # of Universe implies/requires NP in ℓ dynamics
- © existence of three-level Cabibbo hierarchy
- ☺ within SM:
 - $rightarrow tiny weak phase in 1x Cabibbo supp. Modes: V(cs) = 1 ... + i\lambda^4$
 - $^{\hbox{\tiny INS}}$ no weak phase in Cab. favoured & 2 x Cab. supp. modes (except for $D^{\pm} \rightarrow K_{S}h^{\pm})$
- © CP asymmetry linear in NP amplitude
- © final state interactions large
- ☺ BR's for CP eigenstates large
- $\textcircled{\mbox{\scriptsize out}}$ flavour tagging by $D^{\pm^{\star}} \rightarrow D\pi^{\pm}$
- \odot many $H_c \rightarrow \geq 3 P_VV...$ with sizeable BR's _

CP observables also in final state distributions

Measuring a large set of nonleptonic $D_{(s)}$ widths with good accuracy provides important info on ME & FSI phases

essential input for interpreting CP studies!

The SM tells us there is just a desert with hardly an oasis to sustain us on our journey --

yet the ingredients are there for the desert to bloom manyfold!

(2.3) Benchmarks for future searches

for definitive measurements must aim at:

- \circ x_D, y_D down to $O(10^{-3}) \Leftrightarrow r_D \sim O(10^{-6} 10^{-5})$ important at least as experimental validation
- o time dependant CP asymmetries in
 - $D^0 \rightarrow K^+K^-, \pi^+\pi^-, K_5\phi$ down to $O(10^{-4})$
 - $D^0 \rightarrow K^+\pi^-$ down to $O(10^{-3})$ LHCb: ~ 5×10^7 D* \rightarrow D $\pi \rightarrow$ KK in 10⁷ sec
- o direct *CP* in partial widths of

 - $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ down to $O(10^{-3})$ in a host of 1xCS channels down to $O(10^{-3})$
 - \rightarrow in 2xCS channels down to $O(10^{-2})$
- o direct *CP* in the final state distributions: Dalitz plots, T-odd correlations etc. down to O (10-3)

III Conclusions & Outlook

- 2 very central tasks ahead of us in charm studies
- validate quantit. theoret. control over hadronization
 - 🙇 valuable in its own right
 - sharpen and calibrate tools for B studies
 - \land charm baryons?
- unique searches for New Physics with up-type quarks
 - probing D⁰ oscillations important intermediate stage
 - - experimental situation mostly favourable
 - need as much statistics as possible: (Super-)B, LHCb
 - BESIII will make important start

No effect seen so far -- yet only recently entered realistic domain

... leading ultimately to a Chinese Super-Beauty Factory using ILC technology

