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Constraints from chiral symmetry to PWA

The Breit–Wigner description of resonances
In principal the Breit–Wigner description of resonance only works for infinitely small

width.
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Figure 1:

Γ(A → BC) ≡ Γ(A → CDE) ⇒ △B(p2) = 1

p2−m2
B

+imBΓB
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Constraints from chiral symmetry to PWA

For stable particle,

△(p2) =
1

p2 −m2 + iǫ
, (1)

A → B + C, B → D + E . (2)

Heff = fABC + gBDE , (3)

⇒ ΓA =
f2

16π

m2
A −m2

B

m3
A

, ΓB =
g2

16π

1

mB

(4)

Ansatz:

△B(p
2
) =

1

p2 − α+ iβ
. (5)

Equivalently, Eq. (2)≡ A → C +D + E ,

Now calculating ΓA→B+D+E ( in the calculation mA >> ΓA is assumed to simplify

the phase space integration of 3-body final state )

ΓA =
f2

16π

g2

16π

m2
A − α

m3
Aβ

. (6)
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Constraints from chiral symmetry to PWA

⇒ △BW(p
2
) =

1

p2 −m2 + imΓ
. (7)

Not very good analytical property!

⇒ △BW(p2) =
1

p2 −m2 + iρ(s)G
. (8)

Inspired by perturbative calculation to propagator.

Not applicable to a broad object like the σ and κ!
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Constraints from chiral symmetry to PWA

How to parametrize an unstable particle’s propagator?

1. (Real) analyticity (micro-causality), not necessarily for narrow width!

T (s)∗ = T (s∗)

2. No spurious poles nearby

3. respecting known constraints from (chiral) theory

4. No unambiguous separation of pole contribution and the continuum contributions

5. Threshold effects (including couple channel effects) have to be included if there is

a nearby threshold
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Constraints from chiral symmetry to PWA

The problem of an old description to the light
and broad resonances

A very common parametrization form in the literature

S =
M2 − s+ iρ(s)g

M2 − s− iρ(s)g
, (9)

For a sufficiently large M2 and small g it contains a resonance and a virtual state.

(The latter is not found by χPT ! and violates the validity of chiral expansions) for

equal mass scatterings and two resonances for unequal mass scatterings. The scattering

length of the two poles are additive and are both positive. The companions can have

larger contributions than the resonance itself if the resonance is light and broad!

Used both by E791 and BES Experiments
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Figure 2: The traces of two pairs of resonances
when increasing g for different M2. We give two
typical figures: left) figure for M2 > (sR + sL); right)
M2 < (sR + sL).
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The PKU dispersive parametrization form
A resonance located at z0 (Im[z0] > 0) and z∗0: The S matrix can be expressed as:

S(s) =
M2(z0) − s+ iρ(s)sG[z0]

M2(z0) − s− iρ(s)sG[z0]
, (10)

where

M
2
(z0) = Re[z0] +

Im[z0] Im[z0 ρ(z0)]

Re[z0 ρ(z0)]
, G[z0] =

Im[z0]

Re[z0 ρ(z0)]
, (11)

and the scattering length is,

a(z0) =
Im[z0]Re[z0 ρ(z0)]

Im[z0]
2 + Re[z0ρ(z0)]

2

2
√
sR

�
M2(z0) − sR

�
(sR − z0) (sR − z∗0)

. (12)
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Figure 3: Left: M2(z0) as a function of Re[z0], for
fixed Im[z0].

At s = M2(z0) resonance contribution to the phase shift passes π/2. However, a light

and broad resonance can have a very large M(z0)
2. When Re[z0] ≤ (sL + sR)/2,

the phase shift never reaches π/2!
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The factorization of the single channel
scattering S matrix

S
phy.

=

Y
i

S
Ri · Scut . (13)

NO LOSS OF GENERALITY!

Scut: no longer contains any pole:

S
cut

= e
iρf(s)

f(s) =
s

π

Z 0

−∞

ImLf(s
′)

s′(s′ − s)
+
s

π

Z +∞

R

ImRf(s
′)

s′(s′ − s)
(14)

Couple channel effects (or physics at III, IV,... sheets, etc.)

⇒ The phase is additive,

δ(s) =

X

i

δRi + δb.g. (δb.g.(s) = ρ(s)f(s)) (15)
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The violation of Levinson’s theorem

If M2 > 4, the phase pass π/2 when s = M2 and

δ(∞) = π − tan
−1

(
Im[z0]

Re[

p
z0(z0 − 4)]

) < π . (16)

Actually,

δ(∞) − δ(−∞) = π . (17)
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Figure 4: The σ pole contribution to the phase shift
δ00. (Zhou 05)
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Evidence for the existence of σ from BES
experiments: J/ψ → ωπ+π−

(Phys. Lett. B598: 149-158,2004.) (also E791)
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Figure 5: Dalitz plot and π+π− invariant mass
spectrum.

Mσ − iΓσ/2 = (541 ± 39) − i(252 ± 42)MeV
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The σ meson in Ψ′
→ J/Ψππ process
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Figure 6: Fit results of ψ(2S) → π+π−J/ψ (P.K.U. ansatz).

Dots with error bars are data and the histograms are the fit

results. (a) and (b) are the π+π− invariant mass, (c) and (d)

the cosine of the σ polar angle in the lab frame, and (e) and (f)

the cosine of the π+ polar angle in the σ rest frame.

(BES Collaboration, hep-ex/0610023)
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Universality of pole location
Example: Assuming there is a resonance in the channel I,J of ππ → ππ scattering.

Then in any process i → (ππ)IJ + f , does the same pole exist as in the elastic

process ππ → ππ?

Considering any process i → f + (ππ)IJ , transition amplitude A(s1, s2, · · · , sn),
si = (pi1 + pi2)

2 (s1 = (pπ1 + pπ2)
2).

A real analytic function of complex variable s1:

A(s
∗
1, s2 · · · , sn) = A

∗
(s1, s2 · · · , sn) (18)

can be proved to maintain the following property, using Cutkosky rule:

disc A(s1, s2 · · · , sn) = A(s1, s2 · · · , sn) −A(s
∗
1, s2 · · · , sn)

= 2iA(s1, s2 · · · , sn)ρππ(s1)T
∗
ππ→ππ(s1) . (19)

T ∗(s1) = T II(s1) = T (s1)/S(s1) ⇒

A
II

(s1, · · ·) = A
∗
(s1, · · ·) = A(s1, · · ·)/S(s1) . (20)

— Beijing IHEP, Jan. 25, 2007 14



Constraints from chiral symmetry to PWA

κ(700)
The κ resonance also has a rather long history and the status is more controversial.

Data also contain some problems.
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Figure 7: The left, circular and right hand cut of πK
scatterings.
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κ exists if the scattering length is not far from the value
obtained from χPT. Conclusions (almost) model independent.

(H.Q. Zheng, et. al., Nucl.Phys.A733:235-261,2004)

Taking f(0) = 0 into account:

Z. Y. Zhou and H. Q. Zheng, Nucl. Phys. A755 (2006) 212.
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Fit up to 1430MeV of LASS data

χ2
d.o.f. = 80.3/(60 − 6) ;

Mκ = 694 ± 53MeV , Γκ = 606 ± 59MeV ;

MK∗ = 1443 ± 15MeV , ΓK∗ = 199 ± 35MeV

Λ2
1/2 = −13.6 ± 40.0Gev2 , Λ2

3/2 = −11.4 ± 1.7Gev2 , (21)

a1/2 = 0.219 ± 0.034 b1/2 = 0.075 ± 0.023;

a3/2 = −0.042 ± 0.002 b3/2 = −0.0271 (22)

Scattering lengths no longer free parameters. If freezing kappa,

χ2
d.o.f. = 1055.0/(60 − 6) .
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Fit up to 2100 MeV of LASS data

χ
2
d.o.f. = 229.5/(96 − 9) ;

Mκ = 649 ± 63MeV , Γκ = 602 ± 22MeV ;

MK∗ = 1435 ± 6MeV , ΓK∗ = 288 ± 22MeV

Λ
2
1/2 = −16.9 ± 5.6Gev

2
, Λ

2
3/2 = −10.2 ± 1.2Gev

2
,

MK(1950) = 1917 ± 12MeV , Γ
tot
K(1950) = 145 ± 38MeV ;

Γ
Kπ
K(1950) = 87 ± 14MeV (23)

To be compared with the BES-II results:

M − i

2
Γ = (841 ± 30

+81
−73) − i(309 ± 45

+48
−72)MeV. (24)

The Roy–Steiner equation analysis (S. Descotes-Genon and B. Moussallam 06)

mκ = 658 ± 13MeV , Γκ = 557 ± 24MeV (25)
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Watson’s final state theorem
Assuming there exist a group of eigenstates of strong interaction and total angular

momentum J (J is a good quantum number) |1 >, |2 >, ..., |n >. The strong

interaction S matrix diagonal:

S0 = diag(e
2iδ1, · · · , e2iδn)

Introducing the “weak” interaction

S = S0 + iΣ (26)

iΣ ∼ O(ǫ) and no longer diagonal. Unitarity requires SS+ = S+S = 1, or

1 ≃ S+
0 S0 + i(ΣS+

0 − S0Σ
+) +O(ǫ2) . (27)

This leads to ΣS+
0 = S0Σ

+. From time reversal invariance Σmn = Σnm we get

Σmn = |Σmn|ei(δn+δm)
. (28)
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D+
→ K−π+lνl decays

Leptons are spectator for strong interactions, the strong phase generated from πK

rescattering, when the invariant mass of πK system is less than the πη′ threshold, are

exactly the same as the one appeared in πK elastic scatterings, according to the final

state theorem.

The D+ → K−π+lνl process is p wave dominant (D+ → K̄∗0lνl).

However evidence exist for a small, even spin Kπ amplitude that interferes with the

dominant K̄∗0 component (Focus Collaboration 02):

Data can be described by K̄∗0 interference with either a constant amplitude or a broad

spin 0 resonance.

The final state theorem is also confirmed by the Focus Collaboration (Focus 05).

(see also Edera and Pennington 06)

— Beijing IHEP, Jan. 25, 2007 20



Constraints from chiral symmetry to PWA

The Omnés solution

The spectral function of the form-factor satisfies

ImA = ρAT
∗
, (29)

where T is the ππ (partial wave) scattering amplitude. The Eq. (29) has a simple

solution, called the Omnés solution:

A(s+ iǫ) = Pn(s) exp{s
π
Z ∞

4m2
π

δπ(s
′)ds′

s′(s′ − s− iǫ)
} , (30)

From Eq. (29) one make analytic continuation of A(s) we get the following relation

A(s− iǫ) = AII(s + iǫ) = A(s + iǫ)/S . (31)

Next we remove all possible zeros of on the complex plane by dividing a polynomial:

A → A/Pn(s). Then log(A/Pn(s)) is also analytic on the entire cut plane and
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obeys a simple dispersion relation:

log(A/Pn(s)) =
1

2πi

Z
C

log(A(s′)/Pn(s
′))

s′ − s
ds′

=
1

2πi

Z ∞

4m2
π

log(A(s′ + iǫ)/A(s′ − iǫ))

s′ − s
ds

′
=

1

2πi

Z ∞

4m2
π

log(S(s′))

s′ − s
ds

′

=
1

π

Z ∞

4m2
π

δπ(s
′)

s′ − s
ds′ , (32)

which reproduces Eq. (30).

A

R

T

L R

Figure 8: Cut structure of elastic scattering amplitude and the

form-factor.
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Final state phases in the J/Ψ → ωππ process

The final state phases in J/Ψ → ωππ process is also discussed in the literature.

(Bugg 06)

Subtracting the ωπ and 4π final state interactions, Watson theorem fixes the final

state phases:

A0(s) = |A0(s)|eiδπ , (33)

similar to the scalar form factor

F0(s) = |F0(s)|eiδπ . (34)

⇒ R(s) = A0(s)/F0(s) real when s < 4M2
K. Furthermore, since the poles both

in A0 and F0 cancel each other and the cut in R is distant (starting from 4M2
K), R

has to be a slowly varying function, at least at low energies (i.e., when s << 4M2
K):

R(s) = R0 + R1s +
(s− 4M2

K)2

π

Z
4M2

K

ImR(t)

(t − 4M2
K)2(t− s)

. (35)

A0 from J/Ψ → ωππ process extracted (Bugg 06). Also Lahde and Meissner 06
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⇒ A0(s) = R0(1 − s/s0)F0(s) and s0 ≃ 1.65GeV2 (Leutwyler 06).

Figure 9: The comparison between the scalar form
factor and the scalar amplitude extracted from BES
J/Ψ → ωππ process.
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D+
→ K−π+π+ decays

In (E791 2002), an isobar model is used to parameterize the partial wave amplitude.

In this model, the decay amplitude A is described by a sum of quasi two-body terms

D → R + k, R → i + j, in each of the three channels k = 1, 2, 3: (Bugg 06,

Lahde and Meissner 06)

A = d0e
iδ0+

NX
n=1

dne
iδn FR(p, rR, J)

m2
Rn

− sij − imRnΓRn(sij)
×FD(q, rD, J)MJ(p, q) ,

(36)

sij: squared invariant mass of the ij system. J : the spin

mRn the mass and ΓRn(sij) the width of each of the N resonances Rn.

FR and FD: form factors with effective radius parameters rR and rD, for all Rn and

for the parent D meson, respectively.

p and q are momenta of i and k, respectively, in the ij rest frame.

MJ(p, q): a factor introduced to describe spin conservation in the decay (E791 01).

The complex coefficients dne
iδn (n = 0, N) are determined by the D decay

dynamics and are parameters estimated by a fit to the data.
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The E791 kappa

The first, non-resonant (NR) term describes direct decay to i+ j + k with no

intermediate resonance, and d0 and δ0 are assumed to be independent of sij. In

E791 2002 it is noticed that the NR term was small, and that a further term,

parameterized as a new J = 0 resonance κ(800) with mR = (797 ± 19 ± 43)MeV

and ΓR = (410 ± 43 ± 87)MeV, gave a much better description of the data.

Apparently the above parametrization forms can be improved for the purpose of

exploring wide and broad resonance and for testing final state phases.

All phases are generated by cuts as dictated by real analyticity
and hence are of dynamical origin!
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The E791 test of FS theorem

Meadows 05: using a generalized isobar picture of two body interactions. Higher

Kπ waves are described by sums of known resonances, the s-wave amplitude and

phase are determined bin-by-bin in Kπ mass. The phase variation is found not to be

that of K−π+ elastic scattering obtained from LASS Collaboration.

The applicability of Watson theorem in the 3 body hadronic decay is examined

in Meadows 05. In the 3 body D decays, K−π+ forms both isospin 1/2 and 3/2

components. It is not clear, however, how to estimate the I = 3
2 component in s-wave.

Simple quark spectator model of D decay to Kππ ⇒ the Kπ system has only

I = 1/2. However, it is found that if I = 1
2 dominates, then the Watson theorem

does not describe these data well.

This question is re-examined in Edera and Pennington 05. Suggests that in

D → Kππ decays there exists a different mixture of I = 1/2 and I = 3/2 s-wave

interactions than in elastic scattering. Applying Watson’s theorem to this generalized

isobar model allows one to estimate the I = 3/2 Kπ s-wave component, and it is

found to be larger than in hadronic scattering or semi-leptonic processes.
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Conclusions:

The BEPC-II experiment provides a unique opportunity in
the era of precise hadron physics!
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