

CLAS Meson Photoproduction Experiments on Protons

- Introduction
- Single meson photoproduction data
- Double pion photoproduction data
- Upcoming frozen-spin target program

Steffen Strauch University of South Carolina

Workshop on Partial Wave Analysis, Beijing, January 25 - 26, 2007

Thomas Jefferson National Accelerator Facility

JLab in Newport News, VA

- Electron-beam accelerator
- Polarized electron beam
- Beam energies up to $E_0 = 6 \text{ GeV}$
- Three experimental Halls
 A, B, and C

The CEBAF Large Acceptance Spectrometer

Studying the Excited States of the Nucleon

 The location and properties of excited states reflect the dynamics and relevant degrees-of-freedom within the nucleons.

Figure from: B. Krusche and S. Schadmand, Prog. Nucl. Phys. 51, 399 (2003)

Effective Degrees Of Freedom

Quark Models

- Symmetric Constituent Quark Models predict overabundance of excited states ("missing" resonance problem)
- Quark-Diquark Models predict fewer states
- Quark and Flux-Tube Models predict increased number of states

$\gamma p \rightarrow \eta p$: Cross Sections

- ηN final states can originate only from isospin I = 1/2 systems (isospin filter)
- Chiral constituent quark formalism [Saghai]: Possible contribution from an additional (3rd) S₁₁ resonance with M \approx 1.8 GeV and $\Gamma \approx$ 250 MeV

M. Dugger, B. G. Ritchie *et al.*, Phys. Rev. Lett. **89**, 222002 (2002) B. Saghai, Proc. of NSTAR 2004 Workshop; nucl-th/0408054

$\gamma p \rightarrow \eta' p$: Differential Cross Sections

- CLAS: first high quality data for the γp → η'p reaction
- Analysis of data suggests contributions from both the S₁₁(1535) and P₁₁(1710) nucleon resonances to the η'N channel in photoproduction.
- η'-nucleon-nucleon coupling constant:

 $g_{\eta'NN} = 1.3 - 1.5$

Nakayama & Haberzettl: u-channel, t-channel, full (s,u, & t) Sibirtsev: full

$K^+\Lambda$ and $K^+\Sigma^0$: Cross Sections

- Peak at W = 1.7 GeV from P₁₁(1710) and P₁₃(1720)
- Peak at W = 1.9 GeV shifts with c.m. angle, several resonant structures present
- Peak at W = 1.88 GeV consistent with the mass of several well-established Δ resonances
- Shoulder at W = 2.05 GeV

$\mathbf{K}^{*}\Lambda$: Induced Recoil Polarization

- Janssen *et al.* prediction: *u*-channel Y* contributions added to D₁₃(1895) *s*-channel component.
- P_y sensitive to interference between resonances and background

J. W. C. McNabb, R. A. Schumacher et al., Phys. Rev. C 69, 042201(R) (2004)

$K^{+}\Lambda$ and $K^{+}\Sigma^{0}$: Beam-Recoil Observables

• Nine bins in $cos(\Theta_{K,cm})$ for K⁺ Λ and six bins for K⁺ Σ^0 ; Examples:

- Λ nearly maximally polarized along the direction of incident photon's polarization for forward-going kaons (not shown)
- Isobar models: Kaon MAID (), Janssen (...)

R. Bradford and R. A. Schumacher, Proc. of NSTAR 2005 Workshop, nucl-ex/0602004; R. A. Schumacher, Proc. of HYP 2006, nucl-ex/0611035.

Bonn Partial Wave Analysis

- Combined analysis of σ , Σ , and P_y for $\gamma p \rightarrow K^+\Lambda$, $K^+\Sigma^0$, and $K^0\Sigma^+$ from CLAS, SAPHIR, and LEPS and π and η photoproduction data; energy range: 1.6 GeV to 2.3 GeV
- Evidence for new baryon resonances:
 - new P_{11} state at 1840 MeV with Γ = 140 MeV
 - two D₁₃ states at 1870 MeV and 2170 MeV
- S₁₁ two lowest mass states observed, no need for additional S₁₁ states

Double-Pion Photoproduction: $\gamma N \rightarrow \pi \pi N$

• Dominant nucleon-resonance decay channels above W = 1.6 GeV with $\pi\pi N$ final states

 Many "missing" states are predicted to couple strongly to the ππN channels

Particle Data Group Review, S. Eidelman *et al.*, Phys. Lett. B **592**, 1 (2004). S. Capstick and W. Roberts, Phys. Rev. D **49**, 4570 (1994)

CLAS Measurement of $ep \rightarrow e \pi^+ \pi^- p$

 $0.5 \text{ GeV}^2/c^2 < Q^2 < 1.5 \text{ GeV}^2/c^2$

- Comparison of data and phenomenological predictions using available information on N* and Δ states shows discrepancy.
- Hints for new 3/2+(1720) baryon state from CLAS real- and virtual-photon cross-section data

Polarization Observables for Two-Pion Production off the Nucleon

- Eight transversity amplitudes for the $\gamma N \rightarrow \pi \pi N$
- Unpolarized cross section

$$I_0 = \sum_{i=1,4} |b_i^+|^2 + \sum_{i=1,4} |b_i^-|^2$$

- Polarization observables allow extraction of more information, including phases.
- Complete set requires additional single-, double- and triple- polarization observables
- Photon polarization asymmetry

$$I_0 I^{\otimes} = \sum_{i=1,4} \left| b_i^+ \right|^2 - \sum_{i=1,4} \left| b_i^- \right|^2$$

W. Roberts and T. Oed, Phys. Rev. C 71, 055201 (2005)

CLAS $\gamma p \rightarrow \pi^+ \pi^- p$ Experiment

- Circularly polarized photon, $E_{\lambda} = 0.5 \text{ GeV} 2.4 \text{ GeV}$
- Channel identification by missing mass
- 3×10^7 events with W = 1.35 GeV 2.35 GeV

• Asymmetry and Fourier Decomposition

$$I^{\otimes}(\phi) = \frac{1}{P} \frac{N(\lambda = +) - N(\lambda = -)}{N(\lambda = +) + N(\lambda = -)} \approx \sum a_k \sin k\phi$$

• 3×10^7 events with W = 1.35 to 2.35 GeV

W. Roberts and T. Oed, Phys. Rev. Lett. C 71, 055201 (2005)

Beam-Helicity Asymmetries

• I^{\otimes} observable is odd under ϕ transformation (parity conservation) $I^{\otimes}(\phi) = -I^{\otimes}(2\pi - \phi), \quad I^{\otimes}(0) = I^{\otimes}(\pi) = 0$

Phenomenological Models

- Groups:
 - W. Roberts and T. Oed, V. Mokeev, L. Roca, and A. Fix and H. Arenhövel
- Models constructed according to the same scheme effective Lagrangian densities
- Parameters for resonant and background mechanisms taken from experiments or treated as free parameters
- Differences
 - Wide variations in the corresponding coupling constants allowed by the Particle-Data Group listing
 - Treatment of the background, which appears to be very complicated in the effective Lagrangian approach for doublepion photoproduction

W. Roberts and T. Oed, Phys. Rev. C **71**, 055201 (2005); V.I. Mokeev *et al.*, Yad. Fiz. **64**, 1368 (2001); [Phys. At. Nucl. **64**, 1292 (2001)]; L. Roca, Nucl. Phys. A **748**, 192 (2005); A. Fix and H. Arenhövel, Eur. Phys. J. A **25**, 115 (2005)

Model Calculations

Calculations from Mokeev (dashed) and Fix (solid)

 Model predictions agree remarkably well for certain conditions, for other conditions they are much worse and out of phase entirely.

M($p\pi^+$) Distribution at W = 1.5 GeV

Crucial Role of Interferences

 Intermediate-nucleon mechanisms and Δ(1232) mechanisms, and interference of both.
 L. Roca, Nucl. Phys. A 748, 192 (2005)

- Calculations with relative phases of 0°, 90°, 180°, and 270° between the background- and πΔ sub-channel amplitudes V.Mokeev, private communication

Sequential Decay

$$\gamma N \rightarrow \pi \Delta \rightarrow \pi \pi N$$

- $\gamma N \rightarrow \rho N \rightarrow \pi \pi N$
- Helicity asymmetries allow detailed study of the γN → π πN reaction (*e.g.*, sequential decay)

CLAS Polarized-Target Program

E01-104	Helicity Structure of Pion Photoproduction $\vec{\gamma}\vec{p} \rightarrow \pi^0 p, \ \vec{\gamma}\vec{p} \rightarrow \pi^+ n$
E02-112	Search for Missing Nucleon Resonances in Hyperon Photoproduction $\vec{\gamma}\vec{p} \rightarrow K\Lambda, \ \vec{\gamma}\vec{p} \rightarrow K\Sigma$
E03-105	Pion Photoproduction from a Polarized Target $\vec{\gamma}\vec{p} \rightarrow \pi^0 p, \ \vec{\gamma}\vec{p} \rightarrow \pi^+ n$
E05-012	Measurement of Polarization Observables in η Photoproduction with CLAS $\vec{\gamma}\vec{p} \rightarrow \eta p$
E06-013	Measurement of $\pi^+\pi^-$ Photoproduction in Double- Polarization Experiments using CLAS $\vec{\gamma}\vec{p} \rightarrow \pi^+\pi^-p$

FROST Single-Pion Photoproduction

• Constrain partial-wave analyses and reduce model-dependent uncertainties in the extraction of nucleon resonance properties

	Polarization			
Setting	Beam	Target	E_{λ} (GeV)	Observable
А	circular	longitudinal	0.6 - 2.0	E
В	linear	longitudinal	0.4 - 2.0	G
С	circular	transverse	0.6 - 2.0	<i>F</i> , <i>T</i>
D	linear	transverse	0.4 - 2.0	H, P, T

- Four independent complex amplitudes ($\gamma N \rightarrow \pi N$)
- $\theta_{\rm cm} = 15^{\rm o} 155^{\rm o}; \Delta E_{\lambda} \le 50 \text{ MeV}, \Delta \theta_{\rm cm} = 10^{\rm o}$
- More than 5000 data points with one detector system; improvements: single-pol. obs. 2x, double-pol. obs. 8x

 $C_{x'}$ and $C_{z'}$ in $p(\vec{\gamma}, \vec{p})\pi^0$ at $E_{\lambda} = 1900$ MeV

SAID Single-Energy Solutions

 Examples: Polarization data and multipole amplitudes (simulated data)

- Reduction of uncertainties in single-energy solutions
- Increase of the number of single-energy solutions

FROST Double-Pion Photoproduction

$$\rho_{f}I = I_{0} \left\{ \left(1 + \vec{\Lambda}_{i} \cdot \vec{P} + \vec{\sigma} \cdot \vec{P}' + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'} \right) \\ + \delta_{\odot} \left(I^{\odot} + \vec{\Lambda}_{i} \cdot \vec{P}^{\odot} + \vec{\sigma} \cdot \vec{P}^{\odot'} + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'}^{\odot} \right) \\ + \delta_{\ell} \left[\sin 2\beta \left(I^{s} + \vec{\Lambda}_{i} \cdot \vec{P}^{s} + \vec{\sigma} \cdot \vec{P}^{s'} + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'}^{s} \right) \\ + \cos 2\beta \left(I^{c} + \vec{\Lambda}_{i} \cdot \vec{P}^{c} + \vec{\sigma} \cdot \vec{P}^{c'} + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'}^{c} \right) \right] \right\}$$

W. Roberts and T. Oed, Phys. Rev. Lett. C **71**, 055201 (2005)

- Known: I_0 , P^{\otimes}_z (GDH sum rule); new from CLAS: I^{\otimes}
- Polarized beam-target experiments with frozen-spin target at CLAS will make available: P[®]_x, P[®]_y, P[®]_z, I[§], P[§]_x, P[§]_y, P[§]_z, I[§], P[§]_y, P[§]_y, P[§]_z, I[§], P[§]_y, P[§]_y, P[§]_z, I[§], P[§]_x, P[§]_y, P[§]_z, I[§], P[§]_y, P[§]_z, I[§], P[§]_y, P[§]_y, P[§]_z, I[§], P[§]_y, P[§]_y, P[§]_y, I[§]_y, P[§]_y, P[§]_y, P[§]_y, I[§]_y, P[§]_y, P[§]_y, I[§]_y, P[§]_y, P[§]_y, P[§]_y, I[§]_y, P[§]_y, I[§]_y, P[§]_y, I[§]_y, I

Predictions for P^{\otimes}_{z}

Model of A. Fix and H. Arenhövel

• Example of possible studies: D₁₃(1520) decay modes

A. Fix and H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)

Summary

• CLAS meson photoproduction data:

 $\gamma p \rightarrow \eta p, \eta' p, K^+\Lambda, K^+\Sigma^0, K^0\Sigma^+, \pi^+\pi^-p$

- New Resonances?
 - third S_{11} state with m \approx 1800 MeV and Γ = 250 MeV seen in ηN (χQM); not seen in Bonn-PWA
 - new P_{11} state, m = 1840 MeV and Γ = 140 MeV (PWA)
 - two D₁₃ states at 1870 MeV and 2170 MeV (PWA)
- Differential cross sections do not provide sufficient constraints for models; spin observables are essential to resolve these issues:

 \Rightarrow helicity asymmetry in $\pi^+\pi^-p$, FROST