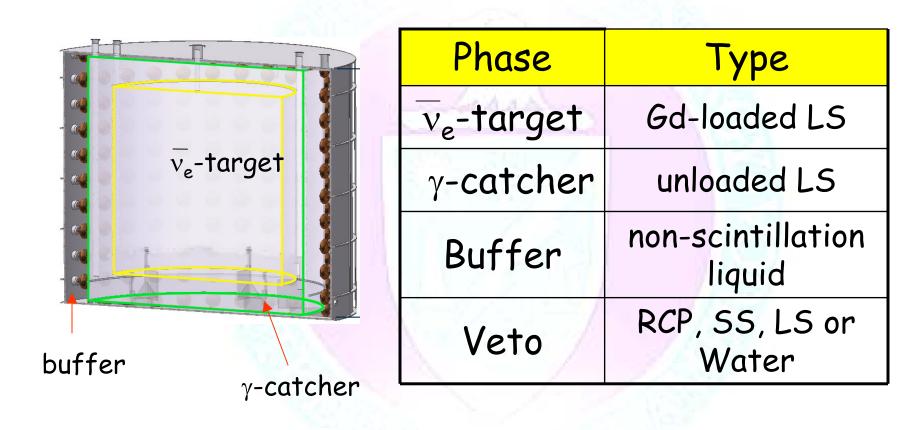


Overview of Gd-loaded and Unloaded Liquid Scintillator for Reactor Anti-v_e Experiments

Minfang Yeh

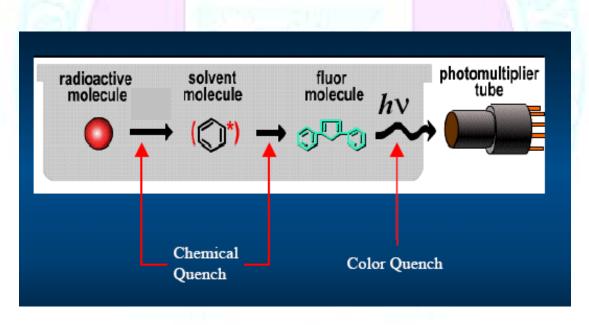
Brookhaven National Laboratory, Chemistry Department Upton, NY


What do we learn from the past?

What are the current developing techniques?

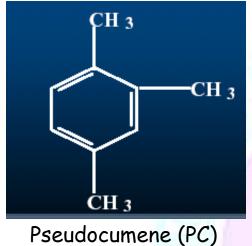
Anti- v_e Detector

Some Old Selections for Garden of the selections for Garden of the selections for Garden of the selection of

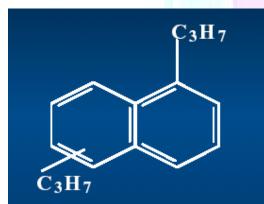

Institution	LS	Extractant	Fluors
Palo Verde ¹	40% PC + 60% Mineral oil	carboxylate	4 g/L PPO + 100 mg/L bis-MSB
CHOOZ1	50% Norpar-15 (paraffinic liquid) + 50% IPB (isopropylbiphenyl)	hexanol	1 g/L p-TP + bis-MSB
Eljen ¹	Anthracene + PC	Unknown	3 g/L PPO + 0.3 g/L POPOP
Bicron ¹	PC or Mix of PC+MO	EHA	unknown
Borexino ²	orexino ² PC; PXE		1.5 g/L PPO or p-TP + bis-MSB
KamLAND ²	KamLAND ² 20% PC + 80% dodecane		1.52 g/L PPO

Components of unloaded LS

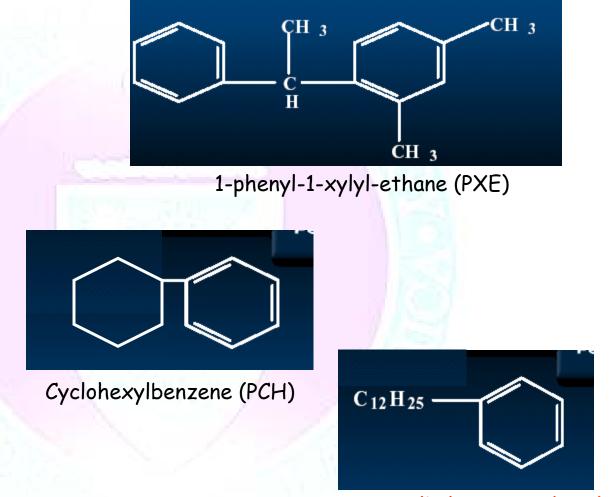
- * Aromatic solvent that contains a high density of π -electrons for energy transfer
- Fluor that transfers the energy (<400 nm) to light (>400 nm) within the optimal detection range of PMT



NOvA 22k-tons unloaded-LS


Cor	nponent	% (w./w.)
Mineral Oil	diluent	94.4
PC	scintillator	5.5
PPO	primary shifter	1.2×10 ⁻¹
bis-MSB	secondary shifter	1.7× 10 ⁻³
внт	Anti-oxidant	~2×10 ⁻⁶
Performance	Attenuation Length	2m - 10m
i ci joi munce	Light Yield	28% anthracence

Selected Aromatic Solvent Selected


(1,2,4-trimethylbenzene)

Di-isopropylnaphthalene (DIN)

ONAL

LABORA

6

Properties of Selected Scintillator

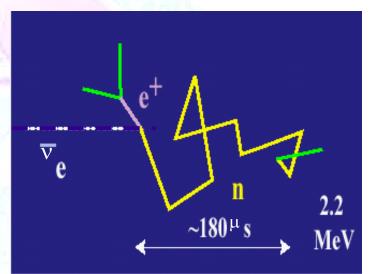
	Gd Loading	d (g/cm³)	UV Abs ⁴³⁰ before / after	Abs ₂₆₀	n ²0	Light Yield	H atoms [‡] per c.c	Flash Point
PC	Yes	0.889	0.008 / 0.002	2	1.504	1	5.35×10 ²²	48 C
РСН	Yes	0.95	0.072 / 0.001	1.7	1.526	0.46	5.71×10 ²²	99 C
DIN	Yes	0.96	0.040 / 0.023	>10		0.87	5.45×10 ²²	>140 C
PXE	Yes, but not stable	0.985	0.044 / 0.022	2.1		0.87	5.08×10 ²²	167 C
LAB	Yes	0.86	0.001 / 0.000	1	1.482	0.98	6.31×10 ²²	130 C
Mineral Oil C ₂₄ ~C ₂₈	No	0.85	0.002 / 0.001	1	~1.46	~	6.73 - 8.00 ×10 ²²	215 C
Dodecane	№ (<20%)	0.75	0.001 / 0.000	1	1.422	~	6.89×10 ²²	71 C

Comparison of Liquid Scintillators

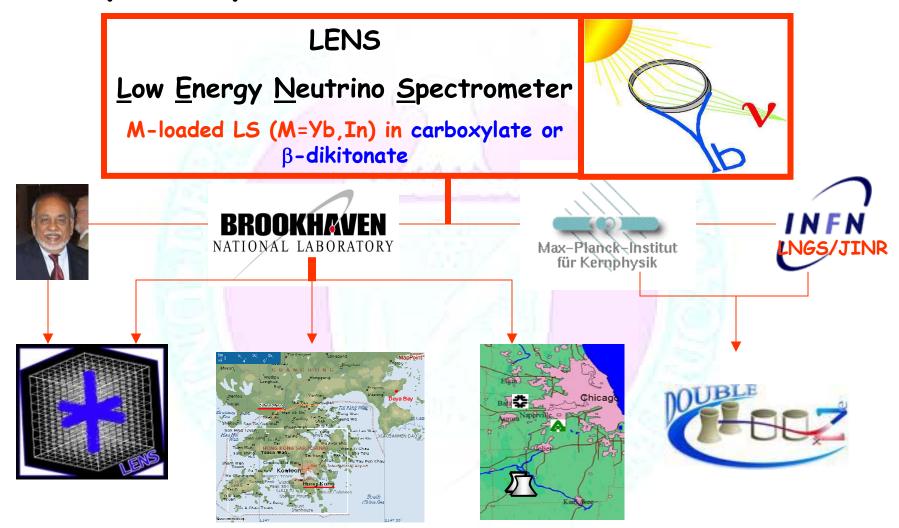
Criteria	Needs	LS	
Physical	optical transparency	LAB > PC > PCH > DIN ~PXE	
Performance	light yield	PC > LAB > DIN~PXE > PCH	
Safety	flash point and toxicity	PXE > DIN > LAB > PCH > PC	
Cost	Cheap and availability	LAB	
Compatibility	vs. acrylic, PVC,	LAB	
Neutrino Interaction	H atoms per c.c	LAB > PCH > DIN > PC > PXE	
Density	Buoyant force	Dependent on ρ_{buffer}	

Preferable Unloaded LS

	PC	LAB
Flash Point	48°C (extra concern raised)	130°C
n ²⁰	1.50	1.48
Density	0.89 g/mL	0.86 g/mL
Attenuation Length	> 20 m	> 25 m
Light Yield	100% PC or 55% anthracene	~98% of PC
Compatibility (acrylic)	Negative, need diluent (i.e., dodecane)	Stable so far; need further study
Cost and availability	availability not sure	Cheap and available
Fluor Dissolution	Very Good	Might need help from PC


H atoms to interact with v_e and to capture the n's (0.3 barn):

 $n + p \rightarrow D + \gamma$ (2.2 MeV)


 0.1~0.2% of Gd in organometallic form to enhance the n-capture crosssection (49000 barn):

 $Gd \rightarrow Gd^* \rightarrow Gd + \gamma's$ (8 MeV)

 Fluors to transfer the light via the delocalized π-electrons of the aromatic solvent into visible region.

Early Inspiration on M-loaded ES

Gd-LS Preparation

Solvent-Solvent extraction vs. organometallic solid dissolution:

18	Solvent-Solvent Extraction	Organometallic Solid Dissolution
Synthesis	One step (~few hrs); simpler and gentle chemical system; the procedures are very consistent and reproducible; easier to be adopted at different institutions.	Multiple steps (~days); increase the chances of contamination; normally require the aids of P=O compounds and/or under harsh chemical condition (high pH or Temp.)
Transportation	Specific tanks and handling required	Easy to be transported

High concentration (1~2%) of Gd-LS to be diluted at percent of interest on experimental site.

Gd-LS in Reactor Experiments

- Past Experiments
 - CHOOZ (direct dissolution)
 - Palo Verde (Bicron)
- Newly Proposed Experiments
 - Double-CHOOZ (LNGS, MPIK)
 - Braidwood (BNL)
 - Daya Bay (BNL, IHEP, JINR)

Palo Verde and CHOOZ Gd

	CHOOZ	Palo Verde
Gd in LS	Gd(NO ₃) ₃	Gd ₂ O ₃
Liquid Scintillator (LS)	5 tons of 50% Norpar-15 (paraffinic liquid) + 50% IPB (isopropylbiphenyl)	11.3 tons of 40% PC + 60% mineral oil
Loading Methods	dissolved in hexanol + LS	converted to 2-ethyl hexanoate dissolved in LS
[Gd]	0.9 g/L	1 g/L
Density	0.846 g/L	~0.87 g/L
$L^{_{att}}_{_{\lambda}}$	4 m	11 m
Light loss	0.4% per day	0.03% per day

CHOOZ. Phys. Lett. B 420 (1998) 397- 404.

Palo Verde, NIM in Phys Res. A 432 (1999) 392 - 398.

Gd in LS	Gd-CBX	Gd-CBX			
Gu IN LS	(Gd(OH)R ₂)	(GdR ₃ .nHR)			
LS	35%PC + 65%dodecane	35%PC + 65%dodecane	20%PXE + 80%dodecane	LVD (C _n H _{2n+2} , <n> = 9.6)</n>	
Loading Methods	Gd salt dissolution				
[Gd]	1 g/L				
Density	0.8	1 g/L	0.79 g/L	~0.8 g/L	
$L_{\lambda}^{_{att}}$	-	~10m	7) - 98	~11 m	
problem	Not stable; polymerization	Stable, but not compatible with acrylic	Not stable; thin-gel formation	Stable; but light yield only ~10% of PXE	

Need a new recipe with the aid of P=O compounds: GdR₃ · nNPOC

C. Cattadori et. al., Ivth Future LENeuEs, Angra dos Reis, 2005

Double CHOOZ 2nd Gd-LS Heidelberg Gd-LS #4 batch #7

		Gd-DPN 1g/l 20% PXE 80% Dodecane Closed cell control Test @ ≈20°C
Gd in LS	Gd-CBX. (NPOC) _n Gd-BDK	
LS	20%PXE + 80%dodecane	60 00 00 00 00 00 00 00 00 00
Loading Methods	Gd salt dissolution	20 20 174days_n 214days_n 214days_n 214days_n 214days_n 214days_n 214days_n 214days_n 20 300 400 500 600 700 800
[Gd]	1 g/L	Lambda (nm) 20% PXE 80% Dodecane & Fluors
Density	0.79 g/L	Gd-carbox. sample 3 Closed cell control Test @ ~20°C
$L^{_{att}}_{_{\lambda}}$	90%T ~ 1 m?	80
Stability	>250 days	
		40 - Odays

20 -

300

400

500

Lambda (nm)

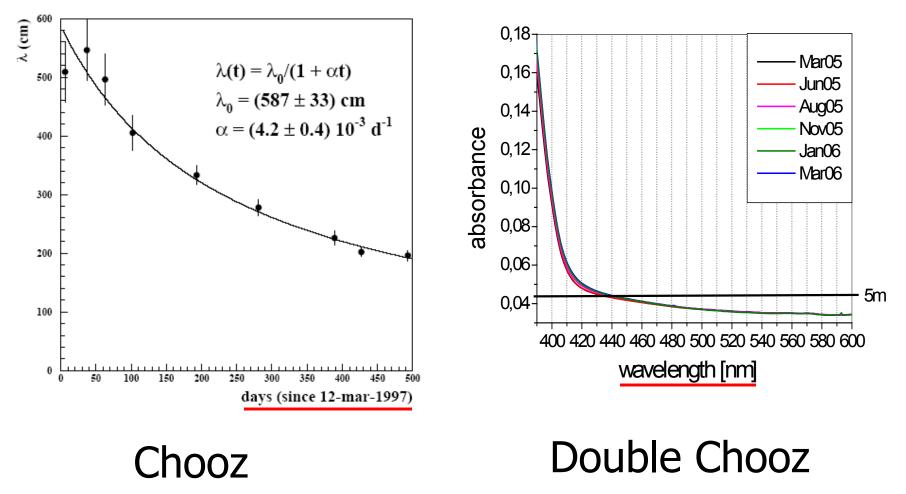
600

60days_n

174days_n

214days.

700


800

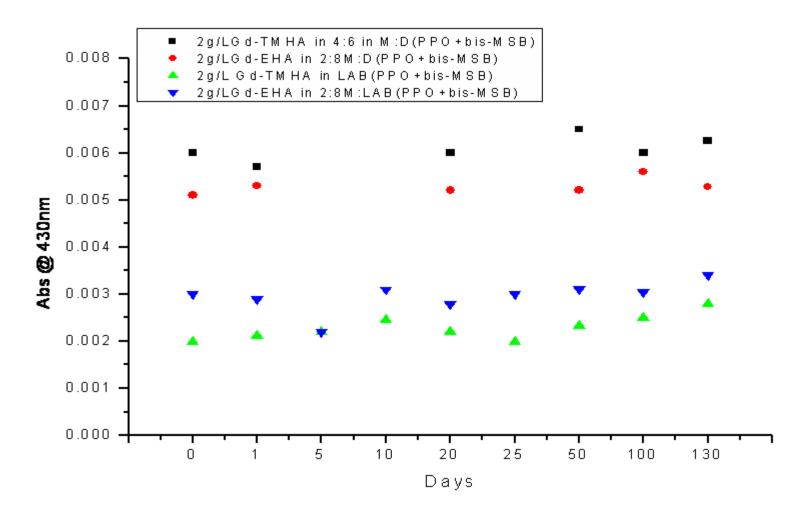
C. Buck., MPI, TAUP 2005 T. Lasserre, CEAS&APC, NO-VE 2006

Long Term Stability: Solved

Eur.Phys.J. C27 (2003) 331-374

Daya Bay-IHEP Gd-LS

- $Gd(TMHA)_3$ can be directly dissolved in LAB
- Gd(EHA)₃ can only be dissolved in the mixtures of mesitylene +
 LAB or dodecane

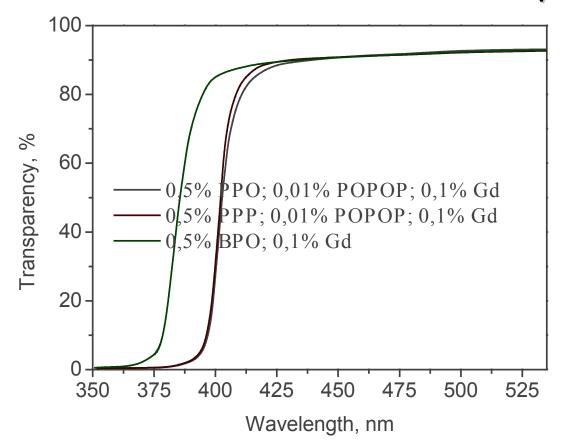

Four Gd-LS samples have been prepared

Gd (g/L)	Ligand	Fluors	Solvents
1.5	TMHA	PPO5g/L bis-MSB 10mg/L	LAB
2.0	ТМНА	PPO5g/L bis-MSB 10mg/L	LAB
1.5	EHA	PPO5g/L bis-MSB 10mg/L	V _{mesitylene} :V _{LAB} =2:8
2.0	EHA	PPO5g/L bis-MSB 10mg/L	V _{mesitylene} :V _{LAB} =2:8

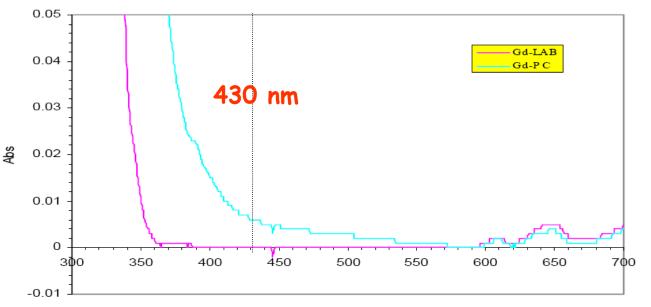
Daya Bay-IHEP Transparency

sample	Absorption Measurement		Vertical LED System
name	Abs @ 430nm	Calculated Attenuation Length/m	Attenuation Length/m
LAB	0.0053	8.2±0.3	8.7±0.6
(unpurified)	± 0.0002	0.2 - 0.3	0.7 <u>-</u> 0.0
LAB	0.0054	8.0 ±0.4	9.0±1.0
(filtered)	± 0.0003	0.0 ±0.4	9.0 - 1.0
LAB+PPO	0.006.2		
+bis-MSB	0.0062	7.0±0.1	7.1±0.4
(filtered)	± 0.0001		

Daya Bay-IHEP Stability



Daya Bay-JINR Gd-LS


- The final composition of the Gdloaded scintillator:
- LS: PCH (60%vol.) + TBP (40%vol.);
- * primary shifter PPO (0,5%);
- \$ light shifter POPOP (0,01%);
- Gd-containing dopant Gd[HMPA]₃Cl₃
 (0,1% Gd)

Daya Bay-JINR Transparency

Gd-loaded scintillators measured by 1-cm cell

Daya Bay-BNL Gd-LS

λ (nm)

- Few percents of Gd can be loaded into pure LAB or pure PC, respectively, using BNL carboxylate recipe.
- Both LS needs additional organic solvent:
 - Gd-LAB needs diluent (PC) to dissolve certain shifters.
 - Gd-PC needs inert diluent (MO or dodecane) to improve compatibility.

Office of

U.S. DEPARTMENT OF ENERG

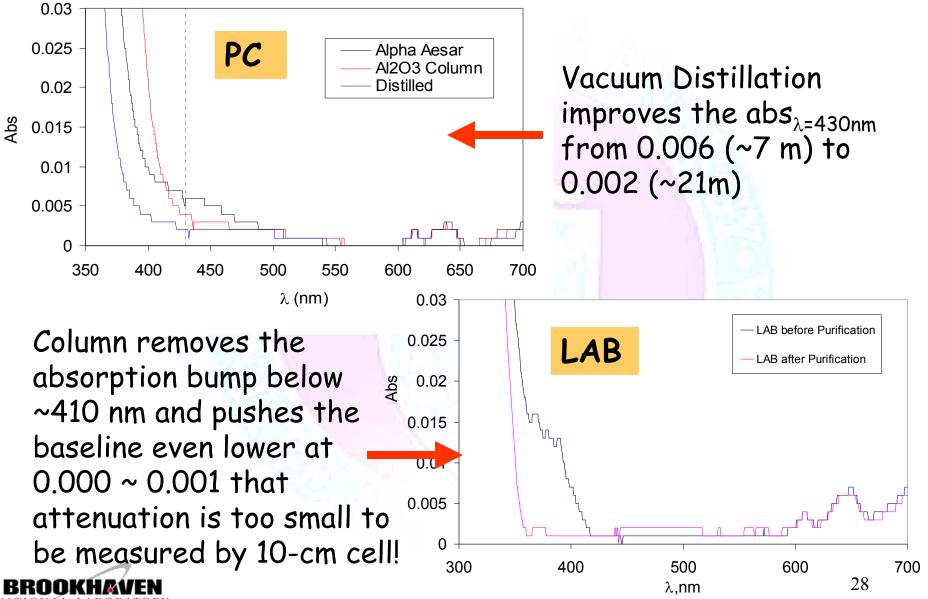
BNL Proposed Gd-LS (1)

Gd in LS	Gd-Carboxylate	0.2%Gd in 20%PC 80% dodecane
Liquid Scintillator	20% PC + 80% dodecane	
Loading Methods	Solvent-solvent Extraction	0.015 6 0.01
[<i>G</i> d]	1 g/L	
Density	~0.79 g/mL	
L^{Att}_{λ}	> 15m	350 400 450 500 550 600 650 700 λ (nm)
Stability	> 1.5 years	
Future Study	Compatibility Test	Light yield is ~80% of pure PC

BNL Proposed Gd-LS (2)

Gd in LS	Gd-Carboxylate	
Liquid Scintillator	10~20% PC + LAB	0.02 Gd in 20%PC 80%LAB
Loading Methods	Solvent-Solvent Extraction	0.015 § 0.01
[Gd]	1 g/L	
Density	~0.87 g/mL	0.005
$L^{Att}_{_{\lambda}}$	> 15m	0 + · · · · · · · · · · · · · · · · · ·
Stability	> 8 months	λ (nm)
Future Study	Compatibility Test QC monitoring	Light yield is ~100% of pure PC

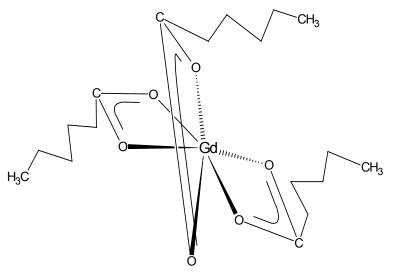
Stability of Gd-LS in PC (10 cm cells)



Something relating to Gd-LS and LS that we need to think of

LS Purification

Office of



ATIONAL LABORATORY

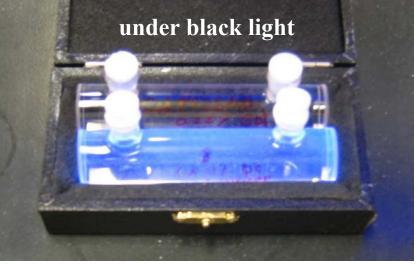
Gd-LS Characterization

Inner-sphere organometallic complex

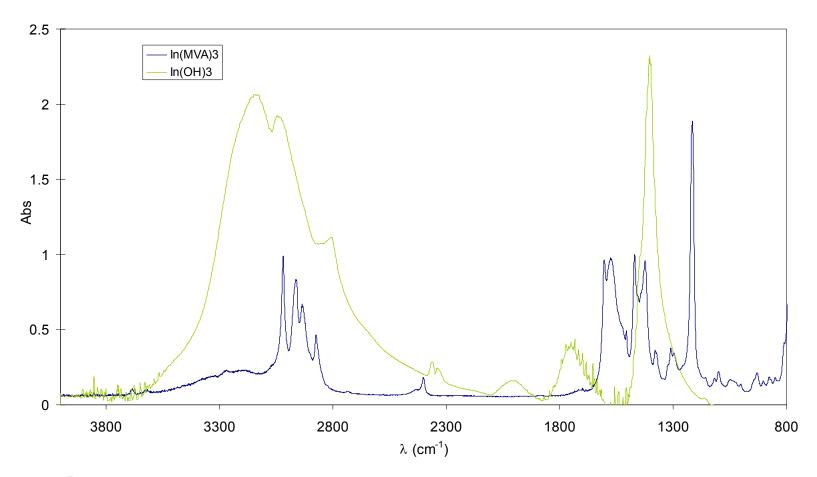
Outer-sphere ligands associated with Gd-LS: [H₂O], [OH-], [NH₄+] and [Cl-]

Analytical Facilities at BNL

- L_{1/e} (attenuation length) by 10cm UV-Vis, dual-beam, blue laser system, new 2-m LED vertical.
- Light Yield (S%)
- [Gd³⁺] by colorimetric method
- [RCOOH]_{total} by acid-base titration
- ✤ [RCOOH]_{free} by IR
- ✤ [Gd species]_{PC} by IR
- [H₂O] by Karl-Fischer titrator
- [NH4⁺] and [Cl⁻] by electrochemistry



Attenuation Length Measurements


- 1- and 10- cm cells in Shimadzu UV-1601 spectrometer (200 1100 nm)
- 1-m horizontal cell, blue laser system (442 nm)
- 2-m vertical, pulsed LED variable wavelength system (350 700 nm)

IR spectra - good and bad M-LS

Selection of Fluors

Wavelength Shifter (shift the UV light to the visible region)					
Primary		Secondary			
Concentration (1.5 ~ 6 g/L)	t _d (ns)	Concentration (15 ~300 mg/L)	t _d (ns)		
butyl-PBD	1.1	bis-MSB	1.6		
PPO	1.5	DIS-MOB	1.0		
p-TP	0.95	РОРОР	1.5		
PBD	1.1	1- 1- 100			

Filling several detectors simultaneously is not trivial

- All the detectors are the same fill them from one batch!
 - Ex: 200 tons
 - ~ 2×10⁵ L or 200 m³
 - ~ 7.5-m diameter spherical tank
 - ~ W×L×H cylinder tank that can be accommodated
- From Surface or Underground?

Summary

- For unloaded LS, safety, radioactive and chemical purity, availability, transparency, light yield, compatibility, density and H-atoms are important.
 - 1. PC or PXE + dodecane
 - 2. LAB
- For Gd-loaded LS, Stability stability stability is the most important! Several techniques are developed and look good at small scale:
 - 1. Gd-BDK
 - 2. Gd-carboxylate
 - 3. Gd-PO
- LS Purification and Gd-LS characterization are the keys of success.
- Several technical issues, LS blending, storage and transportation, filling into different detectors simultaneously, and Gd/H ratio, need to be addressed.

