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Massless fermions. Chiral symmetry.

Consider 1-flavor free massless fermion theory: L0 = iΨ̄γµ∂
µΨ . Define:

ΨL = 1−γ5

2 Ψ

ΨR = 1+γ5

2 Ψ

PS

PS

L0 = iΨ̄Lγµ∂
µΨL + iΨ̄Rγµ∂

µΨR .

This Lagrangian is invariant with respect to independent variation of phases of ΨL

and ΨR .

Symmetry group: U(1)L × U(1)R = U(1)V × U(1)A .

Consider vectorial interaction of the fermion field with the external gauge field
(QED,QCD,...). The symmetry is preserved .
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Spontaneous breaking of chiral symmetry in QCD.

In QCD mu,md � ΛQCD . Hence to a good approximation one can put mu,md = 0 .

uL → αLuL + βLdL uR → αRuR + βRdR

dL → γLuL + δLdL uR → γRuR + δRdR

U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)V × U(1)A

U(1)A is explicitly broken by the axial anomaly (quantum fluctuations).

SU(2)L × SU(2)R → SU(2)V .

Why? The ground state of the theory (vac-
uum) does not have chiral symmetry.

(i) No parity doublets through the whole
hadron spectrum.

(ii) Condensate of the left-right pairs
〈0|q̄q|0〉 = 〈0|q̄RqL + q̄LqR|0〉 ∼ (−240 MeV )3

L R L R

    (PERTURBATIVE)
FREE DIRAC VACUUM                      QCD VACUUM

〈QCD vacuum|HQCD|QCD vacuum〉 < 〈Dirac vacuum|H0|Dirac vacuum〉
L. Ya. Glozman



Chiral symmetry breaking microscopically. NJL.

Consider chiral invariant 4-fermion interaction motivated by gluon exchange (one
ignores isospin for simplicity!)

L = Ψ̄iγµ∂
µΨ−GΨ̄γµΨΨ̄γµΨ

Fermi-nature of quarks requires antisymmetrization:

−Ψ̄γµΨΨ̄γµΨ→ (Ψ̄ΨΨ̄Ψ + Ψ̄iγ5ΨΨ̄iγ5Ψ)− 3
2 Ψ̄γµΨΨ̄γµΨ− 1

2Ψ̄γµγ5ΨΨ̄γµγ5Ψ

In the mean field approximation (quantum fluctuations are small)

Ψ̄ΓΨΨ̄ΓΨ→ 2Ψ̄ΓΨ〈0|Ψ̄ΓΨ|0〉 − const2, Γ = 1, γ5, γµ, γµγ5

Vacuum: |0〉 : JPC = 0++ . Hence 〈0|Ψ̄γ5Ψ|0〉 = 〈0|Ψ̄γµΨ|0〉 = 〈0|Ψ̄γµγ5Ψ|0〉 = 0 .

Ψ̄γµΨΨ̄γµΨ→ 2Ψ̄Ψ〈0|Ψ̄Ψ|0〉

Only Lorentz scalar quark pairs can condense in the vacuum! What is it?
Ψ̄Ψ = Ψ̄RΨL + Ψ̄LΨR. It is not invariant under chiral transformation! L. Ya. Glozman



Chiral symmetry breaking microscopically. NJL.

〈0|Ψ̄Ψ|0〉 ∼ (−240MeV )3 =⇒ Quark condensate of the QCD vacuum.
L = Ψ̄iγµ∂

µΨ−GΨ̄γµΨΨ̄γµΨ =⇒ L = Ψ̄iγµ∂
µΨ + 2G〈0|Ψ̄Ψ|0〉Ψ̄Ψ

It is a Lagrangian for a free Dirac particle with the mass M :

L = Ψ̄(iγµ∂
µ −M)Ψ =⇒M = −2G〈0|Ψ̄Ψ|0〉

Lorentz scalar attractive part of any interaction in QCD is absorbed into a mass of a
quasiparticle (constituent quark)!

Analogy with superconductivity.

e
(k,  )

e
(k,  )

PHONON

qqR L

SCALAR

V ∼ −∑Vkk′c
†
k′↑c

†
−k′↓ck↑c−k↓ V ∼ −GΨ̄ΨΨ̄Ψ

〈0|ck↑c−k↓|0〉 6= 0 〈0|Ψ̄RΨL + Ψ̄LΨR|0〉 6= 0

Formation of a quasiparticle Formation of a quasiparticle

L. Ya. Glozman



Chiral symmetry breaking microscopically. NJL.

Transition from the bare massless particles to quasiparticles (Bogoliubov
transformation):

a
(λ)
M (~p) = γ(~p)a

(λ)
0 (~p) + δ(~p)b

(λ)†

0 (−~p)

b
(λ)†

M (−~p) = −δ(~p)a(λ)
0 (~p) + γ(~p)b

(λ)†

0 (−~p)

γ(~p)2 + δ(~p)2 = 1

For bare (massless) particles:
chirality = + helicity (for quarks)
chirality = - helicity (for antiquarks)

Bare particles have both well-defined helicity and chirality, while quasiparticles
(dressed particles) have only definite helicity and contain a mixture of bare particles
and antiparticles with opposite chirality.

L. Ya. Glozman



Chiral symmetry breaking microscopically. NJL.

In terms of the (almost) massless current quarks the axial current is (almost)
conserved:

Aµ = Ψ̄γµγ5Ψ; ∂µAµ = 0.

If one works in terms of massive quasiparticles (constituent quarks), then

∂µAµ = 2iMΨ̄γ5Ψ.

How to reconcile this? The only solution is that the full axial current (which is
conserved !) in the symmetry broken phase must contain a term which exactly
cancels 2iMΨ̄γ5Ψ:

Aµ = Ψ̄
(
γµγ5 + qµγ5F (q2)

)
Ψ.

∂µAµ = 0 =⇒ Aµ = Ψ̄

(
γµγ5 +

2Mqµ
q2

γ5

)
Ψ.

1/q2 - propagator of massless particle!

Once chiral symmetry is broken it is necessary to have a pseudoscalar zero-mass meson coupled with

the massive fermion quasiparticle (constituent quark). L. Ya. Glozman



Chiral symmetry breaking microscopically. NJL.

M M

q 2
1

π

γ5

axial current axial current

How does all this come out microscopically?

L = G[(Ψ̄Ψ)2 + (Ψ̄iγ5Ψ)2.

π

gluon exchange, or instanton−induced int, or ...

There appears a pole with exactly zero mass in the pseudoscalar channel.
Pion is a relativistic bound state. It contains Q̄Q, Q̄QQ̄Q,... Fock components. Pion is
a highly collective excitation in terms of original (current) quarks q and q̄ because
quasiparticles Q and Q̄ are coherent collective excitations of bare (current) quarks.

L. Ya. Glozman



Low lying meson spectrum.
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Why pion has a nonzero mass? If mu = md = 0 , then mπ = 0 . In
reality mu ∼ 3÷ 5 MeV, md =∼ 5÷ 9 MeV � ΛQCD.

Gell -Mann, Oakes, Renner:

m2
π+,− = − 1

f2
π

mu+md
2 (〈0|ūu|0〉+ 〈0|d̄d|0〉),

m2
π0 = − 1

f2
π

(mu〈0|ūu|0〉md〈0|d̄d|0〉).
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Low and high lying baryon spectra.
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Low-lying spectrum: spontaneous breaking of chiral symmetry dominates physics.

High-lying spectrum: parity doubling indicates the onset of the new physical regime
- chiral symmetry restoration in excited hadrons.

L.Ya.G., PLB, 2000 ; T.D. Cohen and L.Ya.G.,PRD, 2002 ; review in T.D. Cohen and

L.Ya.G.,IJMP A, 2002.
L. Ya. Glozman



Where is a key problem for low-lying baryons?

LINEAR

N=0

N=1

N=2

HARMONIC

A sequence of positive and negative parity levels with confining interaction.

N

∆

∆

∆(1600)

∆(1620)−∆(1700)

Λ(1405)−Λ(1520)

Λ

Λ(1600)
Λ(1670)−Λ(1690)

Λ
N

N(1440)

N(1535)-N(1520)

Low-lying spectra of nucleon, ∆-resonance and Λ-hyperon.

L. Ya. Glozman



The chiral constituent quark model.

Consequences of SBχS, 〈q̄q〉 = −(240MeV )3:
(i) Valence quarks acquire dynamical (constituent) mass through their coupling to
the quark condensate;
(ii) Practically massless Goldstone bosons (pion,...) appear as a collective
quark-antiquark mode.

Physical insight from Nambu and Jona-Lasinio .

The axial current conservation requires a coupling of the constituent quark with the
pion field - Weinberg, Manohar and Georgi, Ripka and Soni, Birse and Banerjee,
Diakonov and Petrov,...

The low-lying baryons can be approximated at low momenta as systems of three
confined quasiparticles (constituent quarks) with the ’residual’ interaction mediated
by the Goldstone boson field - L.Ya.G. and D.O.Riska, Phys. Rep., 1996

−
∑

i<j

V (rij)λ
F
i · λFj ~σi · ~σj

Output: correct low-lying baryon spectra.
L. Ya. Glozman



The chiral constituent quark model.

−∑i<j V (rij)λ
F
i · λFj ~σi · ~σj −→ −

∑
i<j C λFi · λFj ~σi · ~σj

Positive parity states:
Octet (N ,Λ,Σ,Ξ); Octet∗ (N(1440),Λ(1600),...): -14C
Decuplet (∆,Σ∗,Ξ∗,Ω); Decuplet∗ (∆(1600),...) : -4C

Negative parity states:
N(1535)−N(1520): -2C
Λ(1670) − Λ(1690): -2C
Λ(1405) − Λ(1520): -8C

∆−N splitting:
C = 29.3 MeV

N(1440)−N splitting:
~ω = 250 MeV

 ω

 ω

h

h

−14 C

−14C

−4C

−2C

N

N(1440)

∆

N(1535)

Λ

Λ(1405)

Λ(1670)
Λ(1600)

h

h

 ω

 ω

−14 C

−14 C

−2C

−8C
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The chiral constituent quark model

Why does the flavor-spin interaction shift the Roper states below the negative parity
states? =⇒ Analyse symmetry properties of this interaction.

−λFi · λFj ~σi · ~σj
It is attractive if both spin and flavor wave functions are symmetric with respect to
i↔ j or if both are antisymmetric. Hence it is attractive in those pairs where FS
wave function is symmetric and repulsive in those pairs where it is antisymmetric .
Roper states (N(1440),∆(1600),Λ(1600),...) belong to 56 plet of SU(6)FS . Their FS
wave functions are completely symmetric:

Negative parity states belong to 70 plet of SU(6)FS . Their FS wave functions are of
mixed symmetry:

L. Ya. Glozman



The chiral constituent quark model

Spectra have been obtained from
the numerical solution of Faddeev
equations

L.Ya.G., Z.Papp, W.Plessas, PLB,
1996

and stochastic variational approach

L.Ya.G., W.Plessas, K.Varga,
R.F.Wagenbrunn, PRD, 1998
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Chiral symmetry restoration by definition.

Hadrons can be seen as intermediate states in the two-point correlation function:

Π = i

∫
d4xeiqx〈0|T {Jα(x)Jα(0)} |0〉.

X0

Consider two interpolators J1(x) and J2(x) such that J1(x) = UJ2(x)U †where
U ∈ SU(2)L × SU(2)R . If U |0〉 = |0〉 , then spectra of hadrons with the quantum
numbers 1 and 2 must be identical (Wigner-Weyl mode ).

Spontaneous breaking of chiral symmetry in the vacuum implies that the spectra of
1 and 2 are different (Nambu - Goldstone mode ). However, it may happen that the
noninvariance of the vacuum becomes irrelevant (unimportant) high in the
spectrum. Then the chiral symmetry will be restored in the high-lying hadrons.
Effective chiral symmetry restoration or chiral symmetry restoration of the second
kind . L. Ya. Glozman



Chiral symmetry restoration in excited spectra.

Causality→ analyticity→ Π(q2) = 1
π

∫
ds ρ(s)

s−q2−iε

Re q  = s

Im q

2

2
physical  pointsOPE is valid

At unphysical points the OPE guarantees that the effects of the spontaneous
breaking of chiral symmetry (quark condensates of different dimensions) are
suppressed by 1/qn, n > 0. The same must be true in the physical region at large s:

ρ1(s→∞)→ ρ2(s→∞), where J1(x) = UJ2(x)U †

If the spectrum is quasidiscrete, then hadrons must fall into chiral multiplets.L. Ya. Glozman



A simple pedagogical example.

2-dim harm. osc.: H = a†xax + a†yay + 1.

Symmetry: SU(2)× U(1)

EN,m = (N + 1); m = N,N − 2, ...,−N .

Add a symmetry breaking interaction:

VSB = AΘ(r −R).

No SU(2) symmetry.

0 2 4
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Chiral classification of excited baryons.

SU(2)L × SU(2)R

Irreducible representation: (IL, IR)

Parity operation: L←→ R . Hence (IL, IR)←→ (IR, IL) .

Irreducible representation of the parity-chiral group: (IL, IR)⊕ (IR, IL) .

It contains states with isospins I = |IL − IR|, ..., IL + IR of both parities.

For I ≤ 3/2 there are 3 possibilities:

(i) (1/2, 0)⊕ (0, 1/2) : doublets in N (IP = 1/2+, 1/2−).

(ii) (3/2, 0)⊕ (0, 3/2) : doublets in ∆ (IP = 3/2+, 3/2−).

(iii) (1/2, 1)⊕ (1, 1/2) : quartets in N and ∆ (IP = 1/2+, 1/2−, 3/2+, 3/2−).

L. Ya. Glozman



Chiral classification of excited baryons.

J = 1
2 : N+(2100)(∗) N−(2090)(∗) ∆+(1910) ∆−(1900)

J = 3
2 : N+(1900) N−(2080) ∆+(1920) ∆−(1940)(∗)

J = 5
2 : N+(2000) N−(2200) ∆+(1905) ∆−(1930)

J = 7
2 : N+(1990) N−(2190) ∆+(1950) ∆−(2200)(∗)

J = 9
2 : N+(2220) N−(2250) ∆+(2300) ∆−(2400)

J = 11
2 : ? N−(2600) ∆+(2420) ?

J = 13
2 : N+(2700) ? ? ∆−(2750)

J = 15
2 : ? ? ∆+(2950) ?

(1/2, 1)⊕ (1, 1/2) ?? The parity doublets in the nucleon spectrum persist at ∼ 1.7

GeV (no doublets yet in the delta spectrum). Then independent (1/2, 0)⊕ (0, 1/2)

and (3/2, 0)⊕ (0, 3/2) doublets. If in addition (1/2, 1)⊕ (1, 1/2) , then there are still
missing doublets.

L. Ya. Glozman



Chiral classification of excited mesons. L.Ya.G., 2004

U(2)L × U(2)R = SU(2)L × SU(2)R ×U(1)V × U(1)A.

Irreducible representations: (IL, IR) . Hence I = |IL − IR|, ..., IL + IR.

If IL 6= IR then NO definite parity. ⇒ (IL, IR)⊕ (IR, IL) (parity-chiral group).

For mesons with I = 0, 1 there are only three types of representations:

(i) (0, 0); J ≥ 1.. The basis states of both parities are:
|(0, 0);±; J〉 = 1√

2
(R̄R± L̄L)J .

(ii) (1/2, 1/2)a and (1/2, 1/2)b. The basis states of both parities are:
a) |(1/2, 1/2); +; I = 0; J〉 = 1√

2
(R̄L+ L̄R)J ,

|(1/2, 1/2);−; I = 1; J〉 = 1√
2
(R̄~τL− L̄~τR)J .

b) |(1/2, 1/2);−; I = 0; J〉 = 1√
2
(R̄L− L̄R)J ,

|(1/2, 1/2); +; I = 1; J〉 = 1√
2
(R̄~τL+ L̄~τR)J .

(iii) (0, 1)⊕ (1, 0); J ≥ 1.. The basis states of both parities are:

|(0, 1)⊕ (1, 0);±; J〉 = 1√
2
(R̄~τR± L̄~τL)J .

L. Ya. Glozman



Chiral multiplets of excited mesons.

Chiral partners ( (1/2, 1/2) representation of SU(2)L × SU(2)R):

π(I, JPC = 1, 0−+) and f0(I, JPC = 0, 0++),
a0(I, JPC = 1, 0++) and η(I, JPC = 0, 0−+) .

jπ(x) = q̄(x)~τiγ5q(x)←→ jf0(x) = q̄(x)q(x),

ja0(x) = q̄(x)~τq(x)←→ jη(x) = q̄(x)iγ5q(x).
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Chiral multiplets of excited mesons.

Data are from the partial wave analysis of p̄p (Anisovitch, Bugg,...)

(0,0)

ω2(0, 2−−) f2(0, 2++)

1975± 20 1934± 20

2195± 30 2240± 15

(1/2,1/2)

π2(1, 2−+) f2(0, 2++)

2005± 15 2001± 10

2245± 60 2293± 13

(1/2,1/2)

a2(1, 2++) η2(0, 2−+)

2030± 20 2030 ± ?

2255± 20 2267± 14

(0,1)+(1,0)

a2(1, 2++) ρ2(1, 2−−)

1950+30
−70 1940± 40

2175± 40 2225± 35 L. Ya. Glozman



Can simple potential models explain doubling?

BARYONS

rr
r r

r

r

r r
r

2 2

2

2

22

N=0
N=1
N=2

e.g. J=1/2

’Missing states’

MESONS

r

P = −(−1)L; e.g. π →1 S0 f0 →3 P0
L. Ya. Glozman



Chiral symmetry restoration and the string picture.
What is a model for excited hadrons? Assume :

(i) the field in the string is of pure color-electric origin

(ii)the valence quarks have a definite chirality

P

P

S

SS

Then:

(i) The hadrons that belong to the same intrinsic quantum state of the string with
quarks falling into the same parity-chiral multiplet must be degenerate.

(ii) The total parity of the hadron is a product of parity of the string in the given
quantum state and the parity of the specific parity-chiral configuration of the quarks
at the ends of the string.

Other implications:

(i) The spin-orbit interaction of quarks with the fixed chirality is absent (spin-orbit
operator and chirality operator do not commute)

(ii) The tensor interaction is absent (~σ(i) · ~r(i) = 0; ~σ(i) · ~r(j) = 0)
L. Ya. Glozman



Lattice strategy. Ab initio QCD computer calculations.

(i) Discretize space-time.
(ii) Create from the vacuum at some point 0 three quarks with required quantum
numbers and annihilate them at some point x back into the vacuum.
(iii) Calculate by Monte Carlo path integral sum over all field configurations.
(iv) The required physical states will appear as intermediate states:

〈0| [χ̄(t)χ(0)] |0〉 =
∑

n

〈0|χ̄|n〉e−Ent〈n|χ|0〉 = C0e
−E0t + C1e

−E1t + ...

(v) Extract E0 from the large t asymptotics; subtract it and try to extract E1 at small
times; ... If data are precise, it should work. Alas, in reality the data are not precise...

0 5 10
t

100
1000

10000
1e+05
1e+06
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1e+09
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t

1

1.5

2
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The low-lying baryons on the lattice.

Variational method (Michael,1985; Lüscher & Wolf,1990 ): Use several different
interpolators χi and compute the cross-correlation matrix Cij(t) = 〈χ̄i(t)χj(0)〉.
Diagonalize matrix. Those eigenvalues λk(t) which show exponential decay
λk(t) ∼ e−Ekt represent physical states.

D.Brömmel, P.Crompton, C.Gattringer, L.Ya.G., C.B.Lang, S.Schäfer, A. Schäfer,
PRD, 2004.

Chirally improved Dirac operator is used (Gattringer; Gattringer, Hip, Lang, 2001 ).
Each quark is smeared (Gaussian shape). Interpolators:

χ1(x) = εabc
[
uTa (x)Cγ5db(x)

]
uc(x),

χ2(x) = εabc
[
uTa (x)Cdb(x)

]
γ5uc(x),

χ3(x) = iεabc
[
uTa (x)Cγ0γ5db(x)

]
uc(x).
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The low-lying baryons on the lattice.
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Where is the Roper?
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What is the Roper?

Perhaps the Roper is not a 3q state but something else? Many speculations.

The most recent one: The Roper is a pentaquark with the scalar diquark - scalar
diquark - antiquark structure, Jaffe and Wilczek, Phys. Rev. Lett., 2003, Physics
Today, 2004, newspapers, press-conferences, ...

No - this scenario can be reliably ruled out, L.Ya.G., Phys. Rev. Lett., 2004

If the Roper has a leading 3q Fock component (Chiral constituent quark model) =⇒
it must be seen with the 3q interpolator. But how? The first Graz-Regensburg
attempt and attempts of many others did not lead to success...
There are two lattice groups who claim have seen the Roper and the
positive-negative parity level crossing. However, the methods they use can be
shown to be problematic.

Any failure stimulates thinking ...

L. Ya. Glozman



Lowest positive parity baryon wave functions
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Spatially improved operators for excited hadrons.

Idea: to see the radially excited states =⇒ optimize quark fields in the source and
sink in such a way that they would have a maximal overlap with the nodal wave
function =⇒ two different types of gaussian smearings with different width. A linear
combination of these two gaussians (with opposite signs) produces a nodal profile.

New method for excited hadrons on the lattice: ’Spatially improved operators’.

The second Graz - Regensburg attempt (T. Burch, C.Gattringer, L.Ya.G., R. Kleindl,
C.B.Lang, A. Schäfer, 2004) - two different interpolators:

χ1(x) = εabc
[
uTa (x)Cγ5db(x)

]
uc(x),

χ2(x) = εabc
[
uTa (x)Cdb(x)

]
γ5uc(x),

Each quark in the source and sink is smeared wide and narrow Gaussian shape.
Then the cross-correlation matrix is computed and diagonalized.

L. Ya. Glozman



Spatially improved operators for excited hadrons.
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There is a clean exponential decay for three different eigenvalues. Hence they can

be identified with the ground state, N(939), the Roper state, N(1440), and the next

radial excitation N(1710).
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Spatially improved operators for excited hadrons.
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The ground state does not show a node while both excited states do show a node.
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Spatially improved operators for excited hadrons.
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Towards the chiral symmetry restoration on the lattice.

DeGrand, 2003: Valence quarks in excited mesons decouple from the low-lying
eigenmodes of the Dirac operator (i.e. decouple from the quark condensate).

Our lattice calculations:
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Physics of the low-lying and high-lying states is very different and the high-lying
states are not (or weakly) affected by spontaneous breaking of chiral symmetry.
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Summary.

1. There are clear indications from phenomenology and theory that physics of the
low-lying and the high-lying hadrons is rather different. The low-lying baryons and
the pion are strongly affected by the spontaneous breaking of chiral symmetry, while
in the high-lying states this chiral symmetry breaking becomes irrelevant (chiral
symmetry restoration).

2. While for the low-lying baryons the idea of quasiparticles (constituent quarks)
interacting strongly with the pion field is fruitful, in the high-lying hadrons a string
(flux-tube) picture with valence quarks with definite chirality at the ends of the string
is probably correct.

3. First lattice results support the idea of chiral symmetry restoration in excited
hadrons.

4. Physics of the high-lying states is a pure physics of confinement. A vigorous and
systematic experimental study of the high-lying hadrons is required (BEIJING,
PANDA at GSI, JLAB, BONN, JPARC,...)

L. Ya. Glozman
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