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Review
• One-Particle States at Rest

U [R(α, β, γ)] |jm〉 =
X

m′

|jm′〉Dj
m′m

(α, β, γ)(1)

• Relativistic One-Particle States

Canonical: |~p, jm〉 = U [L(~p )] |jm〉

= U [
◦
R(φ, θ, 0)]U [Lz(p)]U−1[

◦
R(φ, θ, 0)] |jm〉

Helicity: |~p, jλ〉 = U [
◦
R(φ, θ, 0)]U [Lz(p)] |jλ〉

= U [L(~p )]U [
◦
R(φ, θ, 0)] |jλ〉

(2)

Canonical states transform like the states at rest.
Helicities are rotational invariants. Helicity frame: ~zh ∝ ~p and ~yh ∝ ~z × ~zh

• Parity and Time-Reversal Operations

• Two-Particle States
?Construction (canonical and helicity); Normalization
?Recoupling coefficients; Symmetry relations
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Review
• Applications
?Cross-section and Width formulas

? 2- and 3-body relativistic kinematics and phase space:

dφ2(1, 2) =
1

(4π)2
p

w
dΩ ; dφ3(1, 2, 3) =

4

(4π)5
dR(α, β, γ) dE2 dE3(3)

dφn = dφ`(c,m+ 1, · · · , n)

„

dw2
c

2π

«

dφm(1, 2, · · · ,m) ,(4)

? S-matrix for a+ b→ c+ d
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Review
• Applications—continued
? 2-body decays:

Consider |JM〉 → |~p; s1 λ2〉 + | − ~p; s2 λ2〉, where ~p = p(θ, φ),

AJ
λ1λ2

(M ; Ω) = 〈~pλ1;−~pλ2|M|JM〉

= NJF
J
λ1λ2

DJ ∗
Mλ(φ, θ, 0) , NJ =

r

2J + 1

4π
, λ = λ1 − λ2 ,

(5)

where

FJ
λ1λ2

=
X

`s

„

2`+ 1

2J + 1

« 1
2

aJ
`s (`0 sλ|Jλ) (s1λ1 s2 −λ2|sλ) ,(6)

Zemach amplitudes: aJ
` ∝ p`

Modern Methods: aJ
` ∝ F`(p/pR

) (Blatt-Weisskopf barrier factors)

The symmetry relations are

FJ
λ1λ2

= ηη1η2(−)J−s1−s2FJ
−λ1−λ2

, FJ
λ1λ2

= (−)JFJ
λ2λ1

.(7)

? 3-body decays; Dalitx-plot analysis
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Review
• Decay Modes: Examples
?Two-pion decays; three-pion decays
ρ→ ππ and ω → πππ have an identical decay amplitude,
if the 3π normal is chosen for the ω decay.

?Decays into ρπ and ωπ
ρ and ω decays described in the helicity frame
Requires introduction of the Breit-Wigner functions for ρ and ω

?Decays modes with photons in the final states
Spin-1 particles do not couple to two-photon final states.

• Density Matrix
?Density Matrix in the Reflectivity Basis:

The indices (i, j) = {χm} where m ≥ 0 and (i, j) = 1, · · · , Nε

ερij =

Kε
X

k=1

εV ik
εV ∗

jk, =⇒ ερ = εV εV †, =⇒ ερ = ερ†(8)

?General Angular Distributions in the Reflectivity Basis:
{χm} = 1, · · · , Nε and {χ′m′} = 1, · · · , Nε

I(τ) ∝
2

X

ε

Nε
X

χm
χ′m′

ερχ χ′

mm′
εDχ

m(τ) εDχ′ ∗
m′ (τ)(9)
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Review
• Maximum-Likelihood Method
?Extended Likelihood functions

α = {εk;χm} and α′ = {εk;χ′m′}(10)

lnL =

n
X

i

ln
h

X

αα′

Vα V ∗
α′ Dα(τi) D

∗
α′(τi)

i

−
X

αα′

Vα V ∗
α′ Ψx

α α′(11)

where the experimental normalization integral is given by

Ψx
α α′ =

Z

h

Dα(τ) D∗
α′(τ)

i

η(τ) φ(τ) dτ(12)

In terms of the full normalization integral,

Ψα α′ =

Z

h

Dα(τ) D∗
α′ (τ)

i

φ(τ) dτ(13)

the predicted numbers of events are

N =
X

αα′

Vα V ∗
α′ Ψα α′(14)
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Isotopic Spin
The QCD Lagrangian:

L = · · · −
X

q

mq

X

i

ψ̄i
q ψ

i
q · · ·

where i = color index (1–3), q = flavor index (1–6) and mq = ‘current-quark’ mass.

u 1–5 MeV

d 3–9 MeV

s 75–170 MeV

c 1.15–1.35 GeV

b 4.0–4.4 GeV

t 174.3 ± 5.1 GeV

8

<

:

flavor SU(2) : (u, d)

flavor SU(3) : (u, d, s)

flavor SU(4) : (u, d, s, c)

Constitutent light-quark mass= (md +mu)/2 = 220 MeV
Constitutent strange-quark mass= ms = 419 MeV

S. Godfrey and N. Isgur, Phys. Rev. D32, 189 (1985)

– p.7



P hysics
BNL Hadron Spectroscopy—Mathematical Techniques Beijing 2004

C- and G-Parity: A new Definition and Applications

C- and G-Parity Operations:

We shall adopt a notation ‘a’ to stand for both the baryon number B and hypercharge
Y . Anti-particles are denoted ‘ā’, so that

a = (B,Y ), ā = (B̄, Ȳ ) = (−B,−Y )(15)

In addition, we shall use y to denote Y/2;

y =
Y

2
=

1

2
(B + S), Q = y + ν(16)

where S, Q, ν are the strangeness, the charge and the third component of isospin,
respectively.
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Let I be the isospin operator. Then, we have

[Ii, Ij ] = i εijk Ik(17)

We start with a state having an isospin σ and its third component ν which transforms
according to the standard |jm〉 representation, so that

Iz |σν〉 = ν|σν〉
I±|σν〉 = F±(ν)|σν ± 1〉(18)

I2|σν〉 = σ(σ + 1)|σν〉

where I±=Ix± iIy and

F±(ν) =
p

(σ ∓ ν)(σ ± ν + 1)(19)

Note that F±(ν) = F∓( −ν). We shall require that anti-particle states transform in the
same way as their particle states according to the standard representations given above.

The C operation changes a state |aν〉 to |ā −ν〉. (We use a shorthand notation
where the isospin σ is omitted from a more complete description of the state |aσν〉.) If
anti-particle states are to transform in the same way as particle states, it is necessary
that one define an anti-particle through the G operation. The key point is that G is
defined so that its operation does not perturb the ν quantum number.
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To define the G operator, we need to first introduce a rotation by 180◦ around the y-axis:

U2[Ry(π)] = (−)2σ, U−1[Ry(π)] = (−)2σ U [Ry(π)],

U [Ry(π)]|σν〉 = (−)σ−ν |σ −ν〉
(20)

It will be shown later that Ry(π) commutes with the C operator. We therefore define
the G operator through

G = CU [Ry(π)] = U [Ry(π)] C, C = (−)2σ U [Ry(π)] G(21)

We are now ready to define an anti-particle state via

G|aν〉 = g|āν〉

G|āν〉 = ḡ|aν〉
(22)

and require that g and ḡ be independent of ν and furthermore that an arbitrary isospin
rotation R(α, β, γ) commutes with G:

h

U [R(α, β, γ)],G
i

= 0(23)
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The action of C on particle and anti-particle states is

C|aν〉 = g(−)σ+ν |ā−ν〉

C|āν〉 = ḡ(−)σ+ν |a−ν〉
(24)

It is customary to define C such that C2 = I, in which case

gḡ(−)2σ = 1(25)

For hadrons, we shall define g and ḡ via

g = η(−)y+σ, ḡ = η(−)ȳ+σ(26)

while for quarks,

g = η(−)B+y+σ , ḡ = η(−)B̄+ȳ+σ(27)

Note that the exponents in these expressions are always integers.
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The quantity F defined by

1

2
F = B + y =

1

2
(3B + S)(28)

will be termed the ‘intrinsic flavor’ of a particle. Note that the intrinsic flavor is always an
integer, as shown in the following table:

states u d s π η K p n Λ Σ Ξ ∆ Ω−

F 1 1 0 0 0 1 3 3 2 2 1 3 0

It is seen that the intrinsic flavor of an anti-particle is the negative of that of the particle,
i.e. F̄ = −F . With these definitions, we can make η a real number and let it take on
values of +1 or−1, so that η2 = +1. Then, we have, since C2 = +1 and gḡ(−)2σ = +1,

G
2 = (−)2σ(29)

conforming to the standard expressions.
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From the actions of the C on |aν〉 and |āν〉 as defined previously, it is easy to work
out the commutation relations between C and I;

{C, Ix} = {C, Iz} = 0, [C, Iy ] = 0(30)

ln other words, C anti-commutes with Ix and Iz while it commutes with Iy . This gives a
ready justification of the definition of G-parity. We can further deduce that, since
rotations commute with G, i.e. GU [R(α, β, γ)] = U [R(α, β, γ)] G,

CU [R(α, β, γ)] C
−1 = U [Ry(π)]U [R(α, β, γ)]U−1[Ry(π)](31)

This shows that the actions of I-spin rotation under charge-conjugation can be
expressed in terms of I-spin 90◦ rotations.
Recapitulate:

G|aν〉 = η (−)y+σ|āν〉

G|āν〉 = η (−)ȳ+σ|aν〉

C|aν〉 = η (−)y−ν |ā −ν〉

C|āν〉 = η (−)ȳ−ν |a −ν〉

(32)

For quarks, replace y = (B + S)/2 → B + y = (3B + S)/2 and
ȳ = (B̄ + S̄)/2 → B̄ + ȳ = (3B̄ + S̄)/2. Conclude: η is the charge conjugation of the
nonstrange neutral members of any meson family of SU(3). [Note G = C(−)I ]
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As an example, Consider the members of the ‘pion’ SU(3) family, i.e. {π}.
We set η = +1 and find

Cπ± = −π∓, Cπ0 = +π0, C η = +η, C η′ = +η′

Gπ = −π, G η = +η
(33)

and

C

„

K+

K0

«

=

„

+K−

−K̄0

«

, C

„

K̄0

K−

«

=

„ −K0

+K+

«

G

„

K+

K0

«

=

„ −K̄0

−K−

«

, G

„

K̄0

K−

«

=

„

+K+

+K0

«
(34)

Note that C2 = I and G2 = −I, consistent with the usual results as applied to the states
with I = 1/2. For the {ρ} SU(3) family, we must set η = −1, so that

C ρ± = +ρ∓, C ρ0 = −ρ0, Cω = −ω, Cφ = −φ

G ρ = +ρ, Gω = −ω
(35)

and

C

„

K∗+

K∗0

«

=

„−K∗−

+K̄ ∗ 0

«

, C

„

K̄ ∗ 0

K∗−

«

=

„

+K∗0

−K∗+

«

G

„

K∗+

K∗0

«

=

„

+K̄0

+K∗−

«

, G

„

K̄ ∗ 0

K∗−

«

=

„−K∗+

−K∗0

«
(36)
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Two-Particle States:

We shall work out here the effect of C and G operations on a particle-antiparticle
system in an eigenstate of total isospin, total intrinsic spin, orbital angular momentum
and total spin. We use the notations I, S, ` and J for these quantum numbers. (Note that
I was used as an isospin operator and S denoted strangeness in section2.) Each
single-particle state in the two-particle center-of-mass(CM) system will be given a
shorthand notation,

|a,+~k, ν1,m1〉 = |a,+~k, σ1ν1, s1m1〉(37)

|ā,−~k, ν2,m2〉 = |ā,−~k, σ2ν2, s2m2〉

where ~k is the 3-momentum of the particle in the CM system, and σ1 and s1 are isospin
and spin of the particles σ1 = σ2 = σ and s1 = s2 = s.

The two-particle system in a given state of |Iν〉 and |`SJM〉 is given by

|aāν〉 =
X

ν1 ν2
m1 m2

(σ1ν1σ2ν2|Iν)(s1m1s2m2|Sms)(Sms`m|JM)

×
Z

d~k Y `
m(~k) |a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉

(38)

where Y `
m(~k) is the usual spherical harmonics.
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We note

C|a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉 = (−)ν1+ν2 |ā,+~k,−ν1,m1〉|a,−~k, −ν2,m2〉

= (−)ν1+ν2+2s|a,−~k, −ν2,m2〉|ā,+~k, −ν1,m1〉

G|a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉 = (−)2σ|ā,+~k, ν1,m1〉|a,−~k, ν2,m2〉

= (−)2σ+2s|a,−~k, ν2,m2〉|ā,+~k, ν1,m1〉

where the second lines have been derived by interchanging two wave functions, which
brings in a factor (−)2s, positive for mesons and negative for fermions.

The effect of C and G on the two-particle states can now be worked out. By

interchanging the subscripts 1 and 2 and by the operation ~k → −~k, we obtain

C|aāν〉 = (−)`+S+ν |aā −ν〉

G|aāν〉 = (−)`+S+I |aāν〉
(39)

where we have used the relationship Y `
m(−~k) = (−)` Y `

m(~k) and the following formulas
for the Clebsch-Gordan coefficient

(σ2 − ν2σ1 − ν1|Iν) = (σ1ν1σ2ν2|Iν)

(σ2ν2σ1ν1|Iν) = (−)I−2σ (σ1ν1σ2ν2|Iν), σ1 = σ2 = σ

(s2m2s1m1|Sms) = (−)S−2s (s1m1s2m2|Sms), s1 = s2 = s
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We next work out the effect of the parity operation(Π) on the two-particle states.
Since antifermions have opposite intrinsic parities to those of their fermion partners, the
Π operation brings in the factor (−)2s. In addition, the 3-momentum ~k changes sign
under the Π operation. Therefore, we have

Π|a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉 = (−)2s |a,−~k, ν1,m1〉|ā,+~k, ν2,m2〉(40)

So, again by using the operation ~k → −~k, we obtain the familiar result

Π|aāν〉 = (−)`+2s |aāν〉(41)

It follows from (31) that a particle-antiparticle with ν = 0 is in an eigenstate of C with

its eigenvalue (−)`+S . This result applies to all neutral NN̄ , qq̄, KK̄ and ππ systems,
with S = 0 for dikaon and dipion systems. For all ν, a particle-antiparticle system has the
G-parity equal to (−)`+S+I . Charged NN̄ , qq̄, KK̄ systems have I = 1, so that their
G-parity is (−)`+S+1 (again S = 0 for dikaons). Since the G-parity is +1 for dipions,
one has `+ I = even for any ππ system. For all ν, the intrinsic parity of a
particle-antiparticle system is given by (−)`+2s.
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(KK̄π)0 Systems:

This case represents an example of a nontrivial application of the C- and G-parity
operators introduced thus far. We start with the K∗ intermediate systems. A K∗ decays
into a πK. For K∗’s with positive strangeness, one has

K∗+ =

r

2

3
π+K0 −

r

1

3
π0K+

K∗0 =

r

1

3
π0K0 −

r

2

3
π−K+

(42)

and for negative strangeness

K̄∗0 =

r

2

3
π+K− −

r

1

3
π0K̄0

K∗− =

r

1

3
π0K− −

r

2

3
π−K̄0

(43)

One uses a convention in which ordering of particles signifies different momenta, so that
one must keep track of it with care.
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It is seen that the C and G operators act on K∗’s in the following way:

C

„

K∗+

K∗0

«

=

„−K∗−

+K̄∗0

«

, C

„

K̄∗0

K∗−

«

=

„

+K∗0

−K̄∗+

«

(44)

and

G

„

K∗+

K∗0

«

=

„

+K̄∗0

+K∗−

«

, G

„

K̄∗0

K∗−

«

=

„−K∗+

−K∗0

«

(45)

Let Ag
I (K∗) stand for the decay amplitude X0 → (KK̄π)0 where I is the isospin of

the X and g its G-parity

Ag
I (K∗) =

1

2

h

`

K∗+K− + g K̄∗0K0
´

− (−)I
`

K∗0K̄0 + g K∗−K+
´

i

(46)

and

GAg
I (K∗) = g Ag

I (K∗), CAg
I (K∗) = g(−)I Ag

I (K∗)(47)
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Introducing the K∗ decays, one sees that

Ag
I (K∗) =

r

1

6

(

h

(π+K0)∗K− + g(−)I (π−K̄0)∗K+
i

+ (−)I
h

(π−K+)∗ K̄0 + g(−)I (π+K−)∗K0
i

)

−
r

1

12

(

h

(π0K+)∗K− + g(−)I (π0K−)∗K+
i

+ (−)I
h

(π0K0)∗ K̄0 + g(−)I (π0K̄0)∗K0
i

)

(48)

We next consider two different intermediate states involving KK̄. Let a’s refer to

a0(980), a2(1320) and other IG = 1− objects, and f ’s stand for either f0(980),
f2(1270) or other IG = 0+ states. They are given by

a0 =
1

2

ˆ

K+K− +K0K̄0 + (K̄0K0 +K−K+)
˜

a− =

r

1

2

ˆ

K0K− +K−K0
˜

, a+ =

r

1

2

ˆ

K+K̄0 + K̄0K+
˜

(49)

where Ga = −a and Ca0 = +a0 as it should be.
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and

f =
1

2

ˆ

K+K− −K0K̄0 − (K̄0K0 −K−K+)
˜

(50)

so that Gf = +f and Cf = +f . Again, let Ag
I (a) and Ag

I (f) refer to the decay
amplitude for X0 → a+ π and X0 → f + π

A+
0 (a) =

r

1

3

“

π+ a− − π0 a0 + π− a+
”

=

r

1

6

h

π+(K0K−)a + π+(K−K0)a+π−(K+K̄0)a + π−(K̄0K+)a

i

−
r

1

12

h

π0(K+K−)a + π0(K0K̄0)a+π0(K̄0K0)a + π0(K−K+)a

i

A+
1 (a) =

r

1

2

“

π+ a− − π− a+
”

=
1

2

h

π+(K0K−)a + π+(K−K0)a−π−(K+K̄0)a − π−(K̄0K+)a

i

(51)

and

A−
1 (f) =

1

2

ˆ

π0(K+K−)f − π0(K0K̄0)f − π0(K̄0K0)f + π0(K−K+)f

˜

(52)

One sees that CA+
0 (a) = +A+

0 (a), CA+
1 (a) = −A+

1 (a) and CA−
1 (f) = +A−

1 (f).
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The complete decay amplitude for X0 → (KK̄π)0 may now be written

2A = A+
0 +A+

1 + A−
0 +A−

1(53)

where
A+

0 = x+
0 A

+
0 (K∗) + y+0 A+

0 (a)

A+
1 = x+

1 A
+
1 (K∗) + y+1 A+

1 (a)

A−
0 = x−0 A−

0 (K∗)

A−
1 = x−1 A−

1 (K∗) + y−1 A−
1 (f)

(54)

where the superscripts ± once again specifies g = ±1 and the subscripts 0 or 1 stand
for I. The variables xg

I and yg
I are the unknown parameters in the problem. Note that an

isoscalar X0 cannot couple to π0 + f , so that one must set y−0 = 0.
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Consider next the amplitude corresponding to π−K
S
K+. The complete amplitude is

A =
1

2
√

6

n

x+
0

ˆ

(π−K+)∗KS
+ (π−K

S
)∗K+

˜

0
− x+

1

ˆ

(π−K+)∗KS
+ (π−K

S
)∗K+

˜

1

+x−0
ˆ

(π−K+)∗KS
− (π−K

S
)∗K+

˜

0
− x−1

ˆ

(π−K+)∗KS
− (π−K

S
)∗K+

˜

1

o

+
1

4

(

r

2

3
y+0

ˆ

π−(K+K
S
)a + π−(K

S
K+)a

˜

0
− y+1

ˆ

π−(K+K
S
)a + π−(K

S
K+)a

˜

1

)

Similarly one finds, for the π+K
S
K− amplitude,

A =
1

2
√

6

n

x+
0

ˆ

(π+K−)∗KS
+ (π+K

S
)∗K−˜

0
+ x+

1

ˆ

(π+K−)∗KS
+ (π+K

S
)∗K−˜

1

−x−0
ˆ

(π+K−)∗KS
− (π+K

S
)∗K−˜

0
− x−1

ˆ

(π+K−)∗KS
− (π+K

S
)∗K−˜

1

o

+
1

4

(

r

2

3
y+0

ˆ

π+(K−K
S
)a + π+(K

S
K−)a

˜

0
+ y+1

ˆ

π+(K−K
S
)a + π+(K

S
K−)a

˜

1

)

C |π−K
S
K+〉 =⇒ |π+K

S
K−〉

{x+
0 , x

−
1 , y

+
0 } =⇒ C = +1 eigenstates

{x+
1 , x

−
0 , y

+
1 } =⇒ C = −1 eigenstates
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Flavor SU(3)

Irreducible Representations:

J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
G. E. Baird and L. C. Biedenharn, J. math. Phys. 4, 1449 (1963); 5, 1723 (1964).
S. U. Chung, E. Klempt, and J. K. Körner, Eur. Phys. J. A. 15, 539 (2002)

Let D(p, q) be an irreducible representation characterized by two integers p and q.
For a physically realizable representation, one must have p− q = 3n, where
n = 0,±1,±2,±3, . . .. The number of basis vectors in an irreducible representation is
given by the dimensionality N of the representation

N = (1 + p) (1 + q)

»

1 +
1

2
(p+ q)

–

(55)

There are two Casimir operators F 2 and G3 with the eigenvalues f2 and g3. They are
given by

f2 =
1

3

ˆ

p2 + q2 + p q + 3 (p+ q)
˜

g3 =
1

18
(p− q) (2p+ q + 3) (2q + p+ 3)

(56)

So an irreducible representation can be equivalently characterized by D(f 2, g3)

corresponding to the two Casimir eigenvalues.
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See Table I for a few examples of practical importance.

Table I: Irreducible Representations of SU(3)

N 1 8 10 10 27

(p, q) (0, 0) (1, 1) (3, 0) (0, 3) (2, 2)

(f2, g3) (0, 0) (3, 0) (6, 9) (6,−9) (8, 0)

An eigenstate (or a wave function) belonging to an irreducible representation is given
by the eigenvalues corresponding to a set of five commuting operators

{F 2, G3, Y, I2, I3}(57)

where I is the isotopic spin and Y is the hypercharge. It is conventional to use I and Y
for both operators and eigenvalues. Thus, the eigenvalue for the SU(2) Casimir operator
I2 is I(I + 1), and that for Y is just Y = B + S, but the eigenvalue for I3 is denoted m
here. Introduce new notations for convenience:

µ = {f2, g3}, σ = {Y, I}, and ν = {Y, I, m}(58)

Then, the eigenstate can be given a compact notation φ(µ)
ν .
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Consider a product representation D(p1, q1) ⊗D(p2, q2). It can be expanded as a
direct sum of irreducible representations. The eigenstates of each irreducible
representation in the expansion are given by

ψ

„

µ1 µ2 µγ

ν

«

=
X

ν1,ν2

„

µ1 µ2 µγ

ν1 ν2 ν

«

φ
(µ1)
ν1

φ
(µ2)
ν2(59)

following the notations used previously. The subscript γ is a label which distinguishes
two irreducible representations with the same (p, q) or (f 2, g3), e.g. 81 and 82. The
transformation matrix is real and orthogonal and given by

„

µ1 µ2 µγ

ν1 ν2 ν

«

=

„

µ1 µ2 µγ

σ1 σ2 σ

«˛

˛

˛

˛

(I1m1 I2m2|Im)(60)

where the first element on the right-hand side is the SU(3) isoscalar factor and the
second element is the usual SU(2) Clebsch-Gordan coefficient.
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Four-quark (qq̄ + qq̄) Vector Mesons:

Consider a decay process X → a1 + a2, where X is a nonstrange (qq̄ + qq̄) meson

with JP = 1− and IG = 1− or IG = 1+. So X is an isovector (I = 1) meson, with both
JPC = 1−+ or JPC = 1−− allowed. The decay products a1 and a2 belong to the
ground-state 1S0 octet, i.e. {π} = {π, K, K̄, η}. We assume here that the η is a pure
SU(3) octet and the η′ is a pure SU(3) singlet. The following expansion gives relevant
irreducible representations

8 ⊗ 8 = 1 ⊕ 81 ⊕ 82 ⊕ 10 ⊕ 10 ⊕ 27(61)

The Bose symmetrization requires that a P -wave meson couple only to antisymmetric
wave functions of SU(3), i.e. 82, 10 and 10, as 1, 81 and 27 are symmetric under the
interchange of a1 and a2.

Antisymmetric Octet (82): IG = 1+ =⇒ JPC = 1−−

Y I Q wave functions

0 1 +1
q

1
3

`

π+ π0 − π0 π+
´

−
q

1
6

`

K̄0K+ −K+ K̄0
´

0
q

1
3

`

π+ π− − π− π+
´

−
q

1
12

`

K̄0K0 −K0 K̄0
´

−
q

1
12

`

K−K+ −K+K−´

−1
q

1
3

`

π0 π− − π− π0
´

−
q

1
6

`

K−K0 −K0K−´
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An example of a self-conjugate representation: {π}
η = +1, C |π0〉 = η |π0〉 and C |a ν〉 = η (−)S/2−ν |ā − ν〉, where I3 = {ν}

I3

S

π+π0

η
π−

K+K0

K̄0K−
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Eigenstates in the irreducible representations of 10 ⊕ 10:

I3

S

−2 −1 0 +1 +2

+2

+1

−1

−2
: 10

: 10
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Antisymmetric: 10

Y I Q wave functions

0 1 +1
q

1
12

`

π+ π0 − π0 π+
´

+ 1√
6

`

K̄0K+ −K+ K̄0
´

+ 1
2

`

π+η − ηπ+
´

0
q

1
12

`

π+ π− − π− π+
´

+
q

1
12

`

K̄0K0 −K0 K̄0
´

+
q

1
12

`

K−K+ −K+K−´

+ 1
2

`

π0η − ηπ0
´

−1
q

1
12

`

π0 π− − π− π0
´

+ 1√
6

`

K−K0 −K0K−´

+ 1
2

`

π−η − ηπ−´

Antisymmetric: 10

Y I Q wave functions

0 1 −1 −
q

1
12

`

π0 π− − π− π0
´

− 1√
6

`

K−K0 −K0K−´

+ 1
2

`

π− η − η π−´

0 −
q

1
12

`

π+ π− − π− π+
´

−
q

1
12

`

K̄0K0 −K0 K̄0
´

−
q

1
12

`

K−K+ −K+K−´

+ 1
2

`

π0η − ηπ0
´

+1 −
q

1
12

`

π+ π0 − π0 π+
´

− 1√
6

`

K̄0K+ −K+ K̄0
´

+ 1
2

`

π+ η − η π+
´
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Let φ be the wave function for {ππ} systems. One concludes

1√
2

h

φ(10) + φ(10)
i

+
=

1√
2

`

π+ η − η π+
´

=⇒ IG(JPC) = 1−(1−+)

1√
2

h

φ(10) − φ(10)
i

+
=

1√
6

`

π+ π0 − π0 π+
´

+
1√
3

`

K̄0K+ −K+ K̄0
´

=⇒ IG(JPC) = 1+(1−−)

(62)

Summarize:

Consider a nonstrange isovector X(qq̄ + qq̄) with the quantum numbers of a vector
meson JP = 1−. Its decay into {π} + {π} should occur in a P wave. If SU(3) is
conserved in the decay,

8

>

>

>

>

>

<

>

>

>

>

>

:

ρ(82) : IG(JPC) = 1+(1−−) → {ππ}′ + {KK̄}′

ρx(10 − 10) : IG(JPC) = 1+(1−−) → {ππ} + {KK̄}

π1(10 + 10) : IG(JPC) = 1−(1−+) → πη

π′
1(8) : IG(JPC) = 1−(1−+) → πη′

(63)
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Vector mesons (JP = 1−) in qq̄ + qq̄ systems:

{qq̄} = 1 ⊕ 8, {qq} = 3 ⊕ 6, {q̄q̄} = 3 ⊕ 6(64)

and hence we must have

{qq̄qq̄} = (1 ⊕ 8) ⊗ (1 ⊕ 8) = (3 ⊕ 6) ⊗ (3 ⊕ 6)

= 2 × 1 ⊕ 4 × 8 ⊕ 10 ⊕ 10 ⊕ 27
(65)

for a total of 81 states. There are two families of 81-plets, designated Vζ (ζ = ±1), given
by

{V−} = 61 1−− self-conjugate members

+ 14 strange members of 10 and 10

+ 3 1−− members of 10 and 10

+ 3 egregious 1−+ members of 10 and 10

{V+} = 61 1−+ self-conjugate members

+ 14 strange members of 10 and 10

+ 3 1−+ members of 10 and 10

+ 3 egregious 1−− members of 10 and 10

(66)
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Let χ be the wave function for any state in Vζ , and let χ0 be its charge-neutral wave
function. Then, we have

Cχ0(10) = ζ χ0(10), Cχ0(10) = ζ χ0(10)

Gχ(10) = −ζ χ(10), Gχ(10) = −ζ χ(10)
(67)

where we require ζ = ±1. The G-parity eigenstates are

χ± =
1√
2

ˆ

χ(10) ∓ ζ χ(10)
˜

, Gχ± = ±χ±(68)

Define H to be the Hamiltonian that gives rise to the masses in the limit of exact SU(3).
Then , one sees that

[F 2,H] = 0, [G3,H] = 0, H|χ±〉 = M± |χ±〉(69)

We see that

G3 |χ±〉 = 9 |χ∓〉 =⇒ H|χ∓〉 = M± |χ∓〉(70)

So we conclude M+ = M−.
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Recall that φ is the wave function defined for {ππ} systems. Then we have

φ± =
1√
2

ˆ

φ(10) ∓ φ(10)
˜

, G|φ±〉 = ±|φ±〉(71)

Consider now the decay X → {ππ} in the limit of exact SU(3)

2A± = 2〈φ± |M|χ±〉

=
ˆ

〈φ(10) ∓ 〈φ(10)
˜

|M|
ˆ

χ(10)〉 ∓ ζ χ(10)〉
˜

= 〈φ(10)|M|χ(10)〉 + ζ 〈φ(10)|M|χ(10)〉

(G†
G = I, ζ2 = 1) → = 2〈φ(10)|M|χ(10)〉

(72)

So we conclude A+ = A− or 〈φ
+
|M|χ

+
〉 = 〈φ− |M|χ−〉.

Summarizing, in the limit of exact SU(3), the observation of IG(JPC) = 1−(1−+)

π1(1400) → πη implies that the π1(1400) must belong to the 10 ⊕ 10 representation of
Vζ . And there must exist its partner IG(JPC) = 1−(1−−) ρx(1400) → {ππ} + {KK̄}
at the same mass and with the same decay strength. For example, we must have

g2
“

π+
1 (1400) → π+η

”

=
1

3
g2

“

ρ+x (1400) → π+π0
”

+
2

3
g2

“

ρ+x (1400) → K+K̄0
”

where g2 is the coupling constant squared.
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Classification of a general decay X → {π} + {π}:

SU(3) Multiplet JPC Composition

Singlet (1) even++ qq̄, qq̄ + gluon, qq̄ + qq̄

Symmetric Octet (81) even++ qq̄, qq̄ + gluon, qq̄ + qq̄

Antisymmetric Octet (82) odd−− qq̄, qq̄ + gluon, qq̄ + qq̄

Multiplet 20 (10 + 10) odd−+ qq̄ + qq̄

Multiplet 20 (10 − 10) odd−− qq̄ + qq̄

Multiplet 27 even++ qq̄ + qq̄

Mulitplet 20:

Quantum Numbers Multiplicity I S

JP = 1− 8 3/2 ±1

JP = 1− 4 1/2 ±1

JP = 1− 2 0 ±2

JPC = 1−− 3 1 0

JPC = 1−+ 3 1 0
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Gluons in QCD

Quantum chromodynamics (QCD), the field theory of strong interactions for colored
quarks and gluons, is based on the group SU(3) of color. The Lagrangian is

L
QCD

= −1

4
Fa

µν F
a µν + iψ̄i

k γ
µ(Dµ)ijψ

j
k

−mk ψ̄
i
k ψ

i
k − 1

(8π)2
θ
QCD

εµναβ Fa
µν F

a
αβ

(73)

where
Fa

µν = ∂µ A
a
ν − ∂ν A

a
µ + gs fabcA

b
µ A

c
ν

(Dµ)ij = ∂µ δij − i

2
gsλ

a
ij A

a
µ

(74)

Here the ψi
k is the 4-component Dirac spinor for each quark with color index i = {1, 2, 3}

and flavor index k = {1, 6}, and Aa
µ is the gluon field with the index a = {1, 8}. gs is the

QCD coupling constant, i.e. αs = g2s/(4π); the fabc is the usual structure constant of the
SU(3) algebra, and λa

ij is the generator of the corresponding SU(3) transformations, so it
is a 3×3 matrix with a = {1, 8} and i, j = {1, 2, 3}; and mk, again with k = {1, 6}, is the
current-quark mass introduced in the previous section.

QCD is a gauge field theory with just two parameters gs and θ
QCD

.
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The Flux-Tube Model
N. Isgur and J. Paton, Phys. Rev. D 31 (1985) 2910;
N. Isgur, R. Kokoski and J. Paton, Phys. Rev. Lett. 54 (1985) 869;
F. E. Close and P. R. Page, Nucl. Phys. B 443 (1995) 233;
T. Barnes, F. E. Close and E. S. Swanson, Phys. Rev. D 52 (1995) 5242.

Let L and S be the orbital angular momentum and the total intrinsic spin of a qq̄
system. Let s1 and s2 be the spins of q and q̄, i.e. s1 = s2 = 1/2. Then, one readily
finds

~J = ~L+ ~S and ~S = ~s1 + ~s2(75)

and

P = (−)L+1, C = (−)L+S , PC = (−)S+1(76)

and the wave function in a state of J , L and S is given by

|JMLS〉 =

r

2L+ 1

4π

X

m1 m2
ms m

(s1m1 s2m2|Sms) (Sms LML|JM)

×
Z

dΩDL ∗
ML0 (φ, θ, 0) |Ω, s1m1 s2m2〉

(77)

where M is the z-component of spin J in a coordinate system given in the rest frame of
qq̄ and Ω = (θ, φ) specifies the direction of the breakup momentum in this rest frame.
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In the flux-tube model pioneered by Isgur and Paton and an excited gluon in qq̄ + g is
described by two transverse polarization states of a string, which may be taken to be

clockwise and anticlockwise about the qq̄ axis. Let n(+)
m [n(−)

m ] be the number of
clockwise (anticlockwise) phonons in the mth mode of string excitation.

Two important quantities are defined from these

Λ =
X

m

h

n
(+)
m − n

(−)
m

i

, N =
X

m

m
h

n
(+)
m + n

(−)
m

i

(78)

It is clear from the definition that Λ is the helicity of the flux tube along the qq̄ axis. The
number N is a new quantity; it will be given the name ‘phonon number’—as it represents
the sum of all the phonons in the problem weighted by the mode number m. The wave
function in the flux-tube model is given by

|JMLS {n(+)
m , n

(−)
m }N Λ〉 =

r

2L+ 1

4π

X

m1 m2
ms ML

(s1m1 s2m2|Sms) (Sms LML|JM)

×
Z

dΩDL ∗
MLΛ(φ, θ, 0) |Ω, s1m1; s2m2; {n(+)

m , n
(−)
m }N Λ〉

(79)

There are a set of five rotational invariants specifying a state in the flux-tube model, i.e.
J , L, S, N and Λ. Note |Λ| ≤ L.
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The relevant quantum numbers are

P = η0 (−)L+Λ+1, C = η0 (−)L+S+Λ+N , PC = (−)S+N+1(80)

where η0 = ±1. Remark: if n(+)
m = n

(−)
m , then Λ = 0 and η0 = +1. Examples are given

in tabular form. The lowest-order gluonic hybrid mesons are

n
(+)
1 = 1 and n(−)

1 = 0; N = 1 and Λ = 1

L S 2S+1LJ (qq̄) JPC(qq̄) JPC(qq̄ + g)

1 0 1P1 1+− 1++

1−−

1 1 3PJ 0++, 1++, 2++ 0−+, 1−+, 2−+

0+−, 1+−, 2+−

2 0 1D2 2−+ 2++

2−−

2 1 3DJ 1−−, 2−−, 3−− 1−+, 2−+, 3−+

1+−, 2+−, 3+−
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An example of n(+)
m = n

(−)
m for m = 1 is given below:

n
(+)
1 = 1 and n(−)

1 = 1; N = 2 and Λ = 0

L S 2S+1LJ (qq̄) JPC(qq̄) JPC(qq̄ + g)

0 0 1S0 0−+ 0−+

0 1 3S1 1−− 1−−

1 0 1P1 1+− 1+−

1 1 3PJ 0++, 1++, 2++ 0++, 1++, 2++

Another case of interest:

n
(+)
2 = 1 and n(−)

2 = 0; N = 2 and Λ = 1

L S 2S+1LJ (qq̄) JPC(qq̄) JPC(qq̄ + g)

1 0 1P1 1+− 1+−

1−+

1 1 3PJ 0++, 1++, 2++ 0++, 1++, 2++

0−−, 1−−, 2−−
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