Selected Topics in Hadron Spectroscopy

Mathematical Techniques

S. U. Chung*

Physics Department, Brookhaven National Laboratory,** Upton, NY 11973

http://cern.ch/suchung/
http://www.phy.bnl.gov/~e852/reviews.html

* Mercator Visiting Professor—2002, 2003, 2004, 2005—ISKP/Bonn, TUM/Munich

** under contract number DE-AC02-98CH10886 with the U.S. Department of Energy

 $Physics \mathcal{BNL}$

Hadron Spectroscopy—Mathematical Techniques

Beijing 2004

• One-Particle States at Rest

(1)
$$U[\mathbf{R}(\alpha,\beta,\gamma)] |jm\rangle = \sum_{m'} |jm'\rangle D^{j}_{m'm}(\alpha,\beta,\gamma)$$

• Relativistic One-Particle States

Canonical: $|\vec{p}, jm\rangle = U[L(\vec{p}\)] |jm\rangle$ $= U[\overset{\circ}{R}(\phi, \theta, 0)] U[L_z(p)] U^{-1}[\overset{\circ}{R}(\phi, \theta, 0)] |jm\rangle$ Helicity: $|\vec{p}, j\lambda\rangle = U[\overset{\circ}{R}(\phi, \theta, 0)] U[L_z(p)] |j\lambda\rangle$ $= U[L(\vec{p}\)] U[\overset{\circ}{R}(\phi, \theta, 0)] |j\lambda\rangle$

Canonical states transform like the states at rest.
Helicities are rotational invariants. Helicity frame:
$$ec{z}_h\proptoec{p}$$
 and $ec{y}_h\proptoec{z} imesec{z}_h$

- Parity and Time-Reversal Operations
- Two-Particle States

(2)

- * Construction (canonical and helicity); Normalization
- * Recoupling coefficients; Symmetry relations

• Applications

***** Cross-section and Width formulas

* 2- and 3-body relativistic kinematics and phase space:

(3)
$$d\phi_2(1,2) = \frac{1}{(4\pi)^2} \frac{p}{w} d\Omega$$
; $d\phi_3(1,2,3) = \frac{4}{(4\pi)^5} dR(\alpha,\beta,\gamma) dE_2 dE_3$

(4)
$$\mathrm{d}\phi_n = \mathrm{d}\phi_\ell(c, m+1, \cdots, n) \left(\frac{\mathrm{d}w_c^2}{2\pi}\right) \mathrm{d}\phi_m(1, 2, \cdots, m) \;,$$

 $\star S$ -matrix for $a + b \rightarrow c + d$

 Applications—continued * 2-body decays:

Consider $|JM\rangle \rightarrow |\vec{p}; s_1 \lambda_2\rangle + |-\vec{p}; s_2 \lambda_2\rangle$, where $\vec{p} = p(\theta, \phi)$,

$$A_{\lambda_1\lambda_2}^J(M;\Omega) = \langle \vec{p}\lambda_1; -\vec{p}\lambda_2 | \mathcal{M} | JM \rangle$$
(5)
$$= N_J F_{\lambda_1\lambda_2}^J D_{M\lambda}^{J*}(\phi,\theta,0) , \quad N_J = \sqrt{\frac{2J+1}{4\pi}} , \quad \lambda = \lambda_1 - \lambda_2 ,$$

where

Physics BN L

(6)
$$F_{\lambda_1\lambda_2}^J = \sum_{\ell s} \left(\frac{2\ell+1}{2J+1}\right)^{\frac{1}{2}} a_{\ell s}^J \left(\ell 0 \ s\lambda | J\lambda\right) \left(s_1\lambda_1 \ s_2 - \lambda_2 | s\lambda\right),$$

Zemach amplitudes: $a_{\ell}^J \propto p^{\ell}$ Modern Methods: $a_{\ell}^J \propto F_{\ell}(p/p_R)$ (Blatt-Weisskopf barrier factors)

The symmetry relations are

(7)
$$F_{\lambda_1 \lambda_2}^J = \eta \eta_1 \eta_2 (-)^{J-s_1-s_2} F_{-\lambda_1 - \lambda_2}^J , \qquad F_{\lambda_1 \lambda_2}^J = (-)^J F_{\lambda_2 \lambda_1}^J .$$

* 3-body decays; Dalitx-plot analysis

• Decay Modes: Examples

⋆ Two-pion decays; three-pion decays

 $ho
ightarrow \pi\pi$ and $\omega
ightarrow \pi\pi\pi$ have an identical decay amplitude,

if the 3π normal is chosen for the ω decay.

$\star\,{\rm Decays}$ into $\rho\pi$ and $\omega\pi$

ho and ω decays described in the helicity frame Requires introduction of the Breit-Wigner functions for ho and ω

 \star Decays modes with photons in the final states

Spin-1 particles do not couple to two-photon final states.

• Density Matrix

* Density Matrix in the Reflectivity Basis:

The indices $(i, j) = \{\chi m\}$ where $m \ge 0$ and $(i, j) = 1, \cdots, N_{\epsilon}$

(8)

$${}^{\epsilon}\rho_{ij} = \sum_{k=1}^{K_{\epsilon}} {}^{\epsilon}V_{ik} {}^{\epsilon}V_{jk}^{*}, \quad \Longrightarrow \quad {}^{\epsilon}\rho = {}^{\epsilon}V {}^{\epsilon}V^{\dagger}, \quad \Longrightarrow \quad {}^{\epsilon}\rho = {}^{\epsilon}\rho^{\dagger}$$

* General Angular Distributions in the Reflectivity Basis:

$$\{\chi m\} = 1, \cdots, N_{\epsilon} \text{ and } \{\chi' m'\} = 1, \cdots, N_{\epsilon}$$

(9)
$$I(\tau) \propto \sum_{\epsilon}^{2} \sum_{\substack{\chi m \\ \chi' m'}}^{\gamma \epsilon} e^{\chi \chi'} e^{\Sigma} D_{m}^{\chi}(\tau) e^{\chi'} T_{m'}^{\chi'}(\tau)$$

Maximum-Likelihood Method
 ★ Extended Likelihood functions

(10)
$$\alpha = \{\epsilon k; \chi m\}$$
 and $\alpha' = \{\epsilon k; \chi' m'\}$

(11)
$$\ln \mathcal{L} = \sum_{i}^{n} \ln \left[\sum_{\alpha \alpha'} V_{\alpha} V_{\alpha'}^{*} D_{\alpha}(\tau_{i}) D_{\alpha'}^{*}(\tau_{i}) \right] - \sum_{\alpha \alpha'} V_{\alpha} V_{\alpha'}^{*} \Psi_{\alpha \alpha'}^{x}$$

where the experimental normalization integral is given by

(12)
$$\Psi^{x}_{\alpha \, \alpha'} = \int \left[D_{\alpha}(\tau) \ D^{*}_{\alpha'}(\tau) \right] \eta(\tau) \ \phi(\tau) \ \mathrm{d}\tau$$

In terms of the full normalization integral,

(13)
$$\Psi_{\alpha \, \alpha'} = \int \left[D_{\alpha}(\tau) \ D^*_{\alpha'}(\tau) \right] \phi(\tau) \, \mathrm{d}\tau$$

the predicted numbers of events are

(14)
$$N = \sum_{\alpha \alpha'} V_{\alpha} V_{\alpha'}^* \Psi_{\alpha \alpha'}$$

Isotopic Spin

The QCD Lagrangian:

$$\mathcal{L} = \cdots - \sum_{q} m_{q} \sum_{i} \bar{\psi}_{q}^{i} \psi_{q}^{i} \cdots$$

where i = color index (1–3), q = flavor index (1–6) and $m_q = \text{`current-quark'}$ mass.

	u	1–5	MeV	
	d	3–9	MeV	
	s	75–170	MeV	$\int \text{flavor } SU(2) : (u, d)$ flavor $SU(3) : (u, d, s)$
	с	1.15–1.35	GeV	$\begin{cases} \text{flavor } SU(3) : & (u, d, s) \\ \text{flavor } SU(4) : & (u, d, s, c) \end{cases}$
	b	4.0-4.4	GeV	
	t	174.3 ± 5.1	GeV	
Constitute Constitute	ent lig ent st	ht-quark mass= $(m_c$ range-quark mass= m_c	$(m_s + m_u)/2$ $m_s = 419$	2 = 220 MeV MeV
			S. Godfre	y and N. Isgur, Phys. Rev. D <u>32</u> , 189 (1985)

C- and G-Parity: A new Definition and Applications

C- and *G*-Parity Operations:

We shall adopt a notation 'a' to stand for both the baryon number B and hypercharge Y. Anti-particles are denoted ' \bar{a} ', so that

(15)
$$a = (B, Y), \quad \bar{a} = (\bar{B}, \bar{Y}) = (-B, -Y)$$

In addition, we shall use y to denote Y/2;

(16)
$$y = \frac{Y}{2} = \frac{1}{2}(B+S), \quad Q = y + \nu$$

where S, Q, ν are the strangeness, the charge and the third component of isospin, respectively.

Let *I* be the isospin operator. Then, we have

$$[I_i, I_j] = i \,\epsilon_{ijk} \, I_k$$

We start with a state having an isospin σ and its third component ν which transforms according to the standard $|jm\rangle$ representation, so that

(18)

$$I_{z}|\sigma\nu\rangle = \nu|\sigma\nu\rangle$$

$$I_{\pm}|\sigma\nu\rangle = F_{\pm}(\nu)|\sigma\nu\pm1\rangle$$

$$I^{2}|\sigma\nu\rangle = \sigma(\sigma+1)|\sigma\nu\rangle$$

where
$$I_{\pm}=I_x\pm iI_y$$
 and
(19) $F_{\pm}(\nu)=\sqrt{(\sigma\mp\nu)(\sigma\pm\nu+1)}$

Note that $F_{\pm}(\nu) = F_{\mp}(-\nu)$. We shall require that anti-particle states transform in the same way as their particle states according to the standard representations given above.

The *C* operation changes a state $|a\nu\rangle$ to $|\bar{a} - \nu\rangle$. (We use a shorthand notation where the isospin σ is omitted from a more complete description of the state $|a\sigma\nu\rangle$.) If anti-particle states are to transform in the same way as particle states, it is necessary that one define an anti-particle through the *G* operation. The key point is that *G* is defined so that its operation does not perturb the ν quantum number.

To define the G operator, we need to first introduce a rotation by 180° around the y-axis:

(20)

$$U^{2}[R_{y}(\pi)] = (-)^{2\sigma}, \ U^{-1}[R_{y}(\pi)] = (-)^{2\sigma} U[R_{y}(\pi)],$$
$$U[R_{y}(\pi)]|\sigma\nu\rangle = (-)^{\sigma-\nu}|\sigma - \nu\rangle$$

It will be shown later that $R_y(\pi)$ commutes with the *C* operator. We therefore define the *G* operator through

(21)
$$\mathbb{G} = \mathbb{C} U[R_y(\pi)] = U[R_y(\pi)] \mathbb{C}, \quad \mathbb{C} = (-)^{2\sigma} U[R_y(\pi)] \mathbb{G}$$

We are now ready to define an anti-particle state via

(22) $\mathbb{G}|a\nu\rangle = g|\bar{a}\nu\rangle \\ \mathbb{G}|\bar{a}\nu\rangle = \bar{g}|a\nu\rangle$

and *require* that *g* and \overline{g} be independent of ν and furthermore that an arbitrary isospin rotation $R(\alpha, \beta, \gamma)$ commutes with *G*:

$$\Big[U[R(lpha,eta,\gamma)],\mathbb{G} \Big] = 0$$

Physics BN L (23)

The action of $\ensuremath{\mathbb{C}}$ on particle and anti-particle states is

$$\mathbb{C}|a\nu\rangle = g(-)^{\sigma+\nu}|\bar{a}-\nu\rangle$$
$$\mathbb{C}|\bar{a}\nu\rangle = \bar{g}(-)^{\sigma+\nu}|a-\nu\rangle$$

It is customary to define \mathbb{C} such that $\mathbb{C}^2 = I$, in which case

(25)
$$g\bar{g}(-)^{2\sigma} = 1$$

For hadrons, we shall define g and \bar{g} via

(26)
$$g = \eta(-)^{y+\sigma}, \quad \bar{g} = \eta(-)^{\bar{y}+\sigma}$$

while for quarks,

(24)

(27)
$$g = \eta(-)^{B+y+\sigma}, \quad \bar{g} = \eta(-)^{\bar{B}+\bar{y}+\sigma}$$

Note that the exponents in these expressions are always integers.

The quantity F defined by

(28)

$$\frac{1}{2}F = B + y = \frac{1}{2}(3B + S)$$

will be termed the '*intrinsic flavor*' of a particle. Note that the intrinsic flavor is always an integer, as shown in the following table:

states
 u
 d
 s

$$\pi$$
 η
 K
 p
 n
 Λ
 Σ
 Ξ
 Δ
 Ω^-

 F
 1
 1
 0
 0
 1
 3
 3
 2
 2
 1
 3
 0

It is seen that the intrinsic flavor of an anti-particle is the negative of that of the particle, i.e. $\bar{F} = -F$. With these definitions, we can make η a real number and let it take on values of +1 or-1, so that $\eta^2 = +1$. Then, we have, since $\mathbb{C}^2 = +1$ and $g\bar{g}(-)^{2\sigma} = +1$,

$$\mathbb{G}^2 = (-)^{2\sigma}$$

conforming to the standard expressions.

Physics BNL From the actions of the \mathbb{C} on $|a\nu\rangle$ and $|\bar{a}\nu\rangle$ as defined previously, it is easy to work out the commutation relations between \mathbb{C} and *I*;

(30) $\{\mathbb{C}, I_x\} = \{\mathbb{C}, I_z\} = 0, \quad [\mathbb{C}, I_y] = 0$

In other words, \mathbb{C} anti-commutes with I_x and I_z while it commutes with I_y . This gives a ready justification of the definition of *G*-parity. We can further deduce that, since rotations commute with \mathbb{G} , i.e. $\mathbb{G} U[R(\alpha, \beta, \gamma)] = U[R(\alpha, \beta, \gamma)] \mathbb{G}$,

(31)
$$\mathbb{C} U[R(\alpha,\beta,\gamma)] \mathbb{C}^{-1} = U[R_y(\pi)] U[R(\alpha,\beta,\gamma)] U^{-1}[R_y(\pi)]$$

This shows that the actions of *I*-spin rotation under charge-conjugation can be expressed in terms of *I*-spin 90° rotations.

Recapitulate:

$$\mathbb{G}|a\nu\rangle = \eta (-)^{y+\sigma} |\bar{a}\nu\rangle$$
$$\mathbb{G}|\bar{a}\nu\rangle = \eta (-)^{\bar{y}+\sigma} |a\nu\rangle$$
$$\mathbb{C}|a\nu\rangle = \eta (-)^{y-\nu} |\bar{a} -\nu\rangle$$
$$\mathbb{C}|\bar{a}\nu\rangle = \eta (-)^{\bar{y}-\nu} |a -\nu\rangle$$

(32)

For quarks, replace
$$y = (B+S)/2 \rightarrow B + y = (3B+S)/2$$
 and
 $\bar{y} = (\bar{B} + \bar{S})/2 \rightarrow \bar{B} + \bar{y} = (3\bar{B} + \bar{S})/2$. Conclude: η is the charge conjugation of the
nonstrange neutral members of any meson family of $SU(3)$. [Note $G = C(-)^{I}$]

As an example, Consider the members of the 'pion' SU(3) family, i.e. $\{\pi\}$. We set $\eta = +1$ and find

(33)

$$\mathbb{C} \pi^{\pm} = -\pi^{\mp}, \qquad \mathbb{C} \pi^{0} = +\pi^{0}, \qquad \mathbb{C} \eta = +\eta, \qquad \mathbb{C} \eta' = +\eta'$$
$$\mathbb{G} \pi = -\pi, \qquad \mathbb{G} \eta = +\eta$$

and

(

(34)
$$\mathbb{C} \begin{pmatrix} K^+ \\ K^0 \end{pmatrix} = \begin{pmatrix} +K^- \\ -\bar{K}^0 \end{pmatrix}, \qquad \mathbb{C} \begin{pmatrix} \bar{K}^0 \\ K^- \end{pmatrix} = \begin{pmatrix} -K^0 \\ +K^+ \end{pmatrix}$$
$$\mathbb{G} \begin{pmatrix} K^+ \\ K^0 \end{pmatrix} = \begin{pmatrix} -\bar{K}^0 \\ -K^- \end{pmatrix}, \qquad \mathbb{G} \begin{pmatrix} \bar{K}^0 \\ K^- \end{pmatrix} = \begin{pmatrix} +K^+ \\ +K^0 \end{pmatrix}$$

Note that $\mathbb{C}^2 = I$ and $\mathbb{G}^2 = -I$, consistent with the usual results as applied to the states with I = 1/2. For the $\{\rho\}$ SU(3) family, we must set $\eta = -1$, so that

$$\mathbb{C} \rho^{\pm} = +\rho^{\mp}, \qquad \mathbb{C} \rho^{0} = -\rho^{0}, \qquad \mathbb{C} \omega = -\omega, \qquad \mathbb{C} \phi = -\phi$$
$$\mathbb{G} \rho = +\rho, \qquad \mathbb{G} \omega = -\omega$$

and

(36)

(35)

$$\mathbb{C} \begin{pmatrix} K^{*+} \\ K^{*0} \end{pmatrix} = \begin{pmatrix} -K^{*-} \\ +\bar{K}^{*0} \end{pmatrix}, \qquad \mathbb{C} \begin{pmatrix} \bar{K}^{*0} \\ K^{*-} \end{pmatrix} = \begin{pmatrix} +K^{*0} \\ -K^{*+} \end{pmatrix}$$
$$\mathbb{G} \begin{pmatrix} K^{*+} \\ K^{*0} \end{pmatrix} = \begin{pmatrix} +\bar{K}^{0} \\ +K^{*-} \end{pmatrix}, \qquad \mathbb{G} \begin{pmatrix} \bar{K}^{*0} \\ K^{*-} \end{pmatrix} = \begin{pmatrix} -K^{*+} \\ -K^{*0} \end{pmatrix}$$

Physics BN L

Two-Particle States:

We shall work out here the effect of *C* and *G* operations on a particle-antiparticle system in an eigenstate of total isospin, total intrinsic spin, orbital angular momentum and total spin. We use the notations I, S, ℓ and J for these quantum numbers. (Note that *I* was used as an isospin operator and *S* denoted strangeness in section2.) Each single-particle state in the two-particle center-of-mass(CM) system will be given a shorthand notation,

(37)
$$|a, +\vec{k}, \nu_1, m_1\rangle = |a, +\vec{k}, \sigma_1\nu_1, s_1m_1\rangle$$

 $|\bar{a}, -\vec{k}, \nu_2, m_2\rangle = |\bar{a}, -\vec{k}, \sigma_2\nu_2, s_2m_2\rangle$

where \vec{k} is the 3-momentum of the particle in the CM system, and σ_1 and s_1 are isospin and spin of the particles $\sigma_1 = \sigma_2 = \sigma$ and $s_1 = s_2 = s$.

The two-particle system in a given state of $|I\nu\rangle$ and $|\ell SJM\rangle$ is given by

$$|a\bar{a}\nu\rangle = \sum_{\substack{\nu_1 \ \nu_2 \\ m_1 \ m_2}} (\sigma_1\nu_1\sigma_2\nu_2|I\nu)(s_1m_1s_2m_2|Sm_s)(Sm_s\ell m|JM)$$
$$\times \int d\vec{k} \ Y_m^{\ell}(\vec{k}) \ |a, +\vec{k}, \nu_1, m_1\rangle |\bar{a}, -\vec{k}, \nu_2, m_2\rangle$$

where $Y_m^{\ell}(\vec{k})$ is the usual spherical harmonics.

 $Physics \mathcal{BNL}$

(38)

we note

$$\begin{split} \mathbb{C}|a,+\vec{k},\nu_{1},m_{1}\rangle|\bar{a},-\vec{k},\nu_{2},m_{2}\rangle &= (-)^{\nu_{1}+\nu_{2}}|\bar{a},+\vec{k},-\nu_{1},m_{1}\rangle|a,-\vec{k},-\nu_{2},m_{2}\rangle\\ &= (-)^{\nu_{1}+\nu_{2}+2s}|a,-\vec{k},-\nu_{2},m_{2}\rangle|\bar{a},+\vec{k},-\nu_{1},m_{1}\rangle\\ \mathbb{G}|a,+\vec{k},\nu_{1},m_{1}\rangle|\bar{a},-\vec{k},\nu_{2},m_{2}\rangle &= (-)^{2\sigma}|\bar{a},+\vec{k},\nu_{1},m_{1}\rangle|a,-\vec{k},\nu_{2},m_{2}\rangle\\ &= (-)^{2\sigma+2s}|a,-\vec{k},\nu_{2},m_{2}\rangle|\bar{a},+\vec{k},\nu_{1},m_{1}\rangle \end{split}$$

where the second lines have been derived by interchanging two wave functions, which brings in a factor $(-)^{2s}$, positive for mesons and negative for fermions.

The effect of \mathbb{C} and \mathbb{G} on the two-particle states can now be worked out. By interchanging the subscripts 1 and 2 and by the operation $\vec{k} \rightarrow -\vec{k}$, we obtain

$$\mathbb{C}|a\bar{a}\nu\rangle = (-)^{\ell+S+\nu} |a\bar{a} - \nu\rangle$$
$$\mathbb{G}|a\bar{a}\nu\rangle = (-)^{\ell+S+I} |a\bar{a}\nu\rangle$$

(39)

where we have used the relationship $Y_m^{\ell}(-\vec{k}) = (-)^{\ell} Y_m^{\ell}(\vec{k})$ and the following formulas for the Clebsch-Gordan coefficient

$$(\sigma_2 - \nu_2 \sigma_1 - \nu_1 | I\nu) = (\sigma_1 \nu_1 \sigma_2 \nu_2 | I\nu)$$

$$(\sigma_2 \nu_2 \sigma_1 \nu_1 | I\nu) = (-)^{I-2\sigma} (\sigma_1 \nu_1 \sigma_2 \nu_2 | I\nu), \quad \sigma_1 = \sigma_2 = \sigma$$

$$(s_2 m_2 s_1 m_1 | Sm_s) = (-)^{S-2s} (s_1 m_1 s_2 m_2 | Sm_s), \quad s_1 = s_2 = s$$

We next work out the effect of the parity operation(Π) on the two-particle states. Since antifermions have opposite intrinsic parities to those of their fermion partners, the Π operation brings in the factor $(-)^{2s}$. In addition, the 3-momentum \vec{k} changes sign under the Π operation. Therefore, we have

(40)
$$\Pi |a, +\vec{k}, \nu_1, m_1\rangle |\bar{a}, -\vec{k}, \nu_2, m_2\rangle = (-)^{2s} |a, -\vec{k}, \nu_1, m_1\rangle |\bar{a}, +\vec{k}, \nu_2, m_2\rangle$$

So, again by using the operation $\vec{k} \rightarrow -\vec{k}$, we obtain the familiar result

(41)
$$\Pi |a\bar{a}\nu\rangle = (-)^{\ell+2s} |a\bar{a}\nu\rangle$$

It follows from (31) that a particle-antiparticle with $\nu = 0$ is in an eigenstate of \mathbb{C} with its eigenvalue $(-)^{\ell+S}$. This result applies to all neutral $N\bar{N}$, $q\bar{q}$, $K\bar{K}$ and $\pi\pi$ systems, with S = 0 for dikaon and dipion systems. For all ν , a particle-antiparticle system has the *G*-parity equal to $(-)^{\ell+S+I}$. Charged $N\bar{N}$, $q\bar{q}$, $K\bar{K}$ systems have I = 1, so that their *G*-parity is $(-)^{\ell+S+1}$ (again S = 0 for dikaons). Since the *G*-parity is +1 for dipions, one has $\ell + I =$ even for any $\pi\pi$ system. For all ν , the intrinsic parity of a particle-antiparticle system is given by $(-)^{\ell+2s}$. $(K\bar{K}\pi)^0$ Systems:

This case represents an example of a nontrivial application of the *C*- and *G*-parity operators introduced thus far. We start with the K^* intermediate systems. A K^* decays into a πK . For K^* 's with positive strangeness, one has

$$K^{*+} = \sqrt{\frac{2}{3}}\pi^{+}K^{0} - \sqrt{\frac{1}{3}}\pi^{0}K^{+}$$
$$K^{*0} = \sqrt{\frac{1}{3}}\pi^{0}K^{0} - \sqrt{\frac{2}{3}}\pi^{-}K^{+}$$

(42)

and for negative strangeness

(43)

$$\bar{K}^{*0} = \sqrt{\frac{2}{3}}\pi^{+}K^{-} - \sqrt{\frac{1}{3}}\pi^{0}\bar{K}^{0}$$
$$K^{*-} = \sqrt{\frac{1}{3}}\pi^{0}K^{-} - \sqrt{\frac{2}{3}}\pi^{-}\bar{K}^{0}$$

One uses a convention in which ordering of particles signifies different momenta, so that one must keep track of it with care.

It is seen that the C and G operators act on K^* 's in the following way:

(44)
$$\mathbb{C}\begin{pmatrix} K^{*+}\\ K^{*0} \end{pmatrix} = \begin{pmatrix} -K^{*-}\\ +\bar{K}^{*0} \end{pmatrix}, \qquad \mathbb{C}\begin{pmatrix} \bar{K}^{*0}\\ K^{*-} \end{pmatrix} = \begin{pmatrix} +K^{*0}\\ -\bar{K}^{*+} \end{pmatrix}$$

and

(45)
$$\mathbb{G}\begin{pmatrix} K^{*+}\\ K^{*0} \end{pmatrix} = \begin{pmatrix} +\bar{K}^{*0}\\ +\bar{K}^{*-} \end{pmatrix}, \qquad \mathbb{G}\begin{pmatrix} \bar{K}^{*0}\\ K^{*-} \end{pmatrix} = \begin{pmatrix} -\bar{K}^{*+}\\ -\bar{K}^{*0} \end{pmatrix}$$

Let $A_I^g(K^*)$ stand for the decay amplitude $X^0 \to (K\bar{K}\pi)^0$ where I is the isospin of the X and g its G-parity

(46)
$$A_I^g(K^*) = \frac{1}{2} \left[\left(K^{*+} K^- + g \, \bar{K}^{*0} K^0 \right) - (-)^I \left(K^{*0} \bar{K}^0 + g \, K^{*-} K^+ \right) \right]$$

and

(47)
$$\mathbb{G} A_I^g(K^*) = g A_I^g(K^*), \qquad \mathbb{C} A_I^g(K^*) = g(-)^I A_I^g(K^*)$$

Introducing the K^* decays, one sees that

$$\begin{split} A_{I}^{g}(K^{*}) = & \sqrt{\frac{1}{6}} \Biggl\{ \left[(\pi^{+}K^{0})_{*} K^{-} + g(-)^{I} (\pi^{-}\bar{K}^{0})_{*} K^{+} \right] \\ & + (-)^{I} \left[(\pi^{-}K^{+})_{*} \bar{K}^{0} + g(-)^{I} (\pi^{+}K^{-})_{*} K^{0} \right] \Biggr\} \\ & - \sqrt{\frac{1}{12}} \Biggl\{ \left[(\pi^{0}K^{+})_{*} K^{-} + g(-)^{I} (\pi^{0}K^{-})_{*} K^{+} \right] \\ & + (-)^{I} \left[(\pi^{0}K^{0})_{*} \bar{K}^{0} + g(-)^{I} (\pi^{0}\bar{K}^{0})_{*} K^{0} \right] \Biggr\} \end{split}$$

We next consider two different intermediate states involving $K\bar{K}$. Let *a*'s refer to $a_0(980)$, $a_2(1320)$ and other $I^G = 1^-$ objects, and *f*'s stand for either $f_0(980)$, $f_2(1270)$ or other $I^G = 0^+$ states. They are given by

(49)
$$a^{0} = \frac{1}{2} \left[K^{+} K^{-} + K^{0} \bar{K}^{0} + (\bar{K}^{0} K^{0} + K^{-} K^{+}) \right]$$
$$a^{-} = \sqrt{\frac{1}{2}} \left[K^{0} K^{-} + K^{-} K^{0} \right], \quad a^{+} = \sqrt{\frac{1}{2}} \left[K^{+} \bar{K}^{0} + \bar{K}^{0} K^{+} \right]$$

where $\mathbb{G}a = -a$ and $\mathbb{C}a^0 = +a^0$ as it should be.

 ${}^{Physics}_{\mathcal{BNL}}$

(48)

Hadron Spectroscopy—Mathematical Techniques

Beijing 2004

and

(50)
$$f = \frac{1}{2} \left[K^+ K^- - K^0 \bar{K}^0 - (\bar{K}^0 K^0 - K^- K^+) \right]$$

so that $\mathbb{G}f = +f$ and $\mathbb{C}f = +f$. Again, let $A_I^g(a)$ and $A_I^g(f)$ refer to the decay amplitude for $X^0 \to a + \pi$ and $X^0 \to f + \pi$

$$\begin{aligned} A_0^+(a) &= \sqrt{\frac{1}{3}} \left(\pi^+ a^- - \pi^0 a^0 + \pi^- a^+ \right) \\ &= \sqrt{\frac{1}{6}} \left[\pi^+ (K^0 K^-)_a + \pi^+ (K^- K^0)_a + \pi^- (K^+ \bar{K}^0)_a + \pi^- (\bar{K}^0 K^+)_a \right] \\ (51) &\quad -\sqrt{\frac{1}{12}} \left[\pi^0 (K^+ K^-)_a + \pi^0 (K^0 \bar{K}^0)_a + \pi^0 (\bar{K}^0 K^0)_a + \pi^0 (K^- K^+)_a \right] \\ A_1^+(a) &= \sqrt{\frac{1}{2}} \left(\pi^+ a^- - \pi^- a^+ \right) \\ &= \frac{1}{2} \left[\pi^+ (K^0 K^-)_a + \pi^+ (K^- K^0)_a - \pi^- (K^+ \bar{K}^0)_a - \pi^- (\bar{K}^0 K^+)_a \right] \end{aligned}$$

and

(52)
$$A_1^-(f) = \frac{1}{2} \left[\pi^0 (K^+ K^-)_f - \pi^0 (K^0 \bar{K}^0)_f - \pi^0 (\bar{K}^0 K^0)_f + \pi^0 (K^- K^+)_f \right]$$

One sees that $CA_0^+(a) = +A_0^+(a)$, $CA_1^+(a) = -A_1^+(a)$ and $CA_1^-(f) = +A_1^-(f)$.

The complete decay amplitude for $X^0 \rightarrow (K\bar{K}\pi)^0$ may now be written

(53)
$$2A = A_0^+ + A_1^+ + A_0^- + A_1^-$$

where

(54)

$$\begin{aligned} A_0^+ &= x_0^+ A_0^+(K^*) + y_0^+ A_0^+(a) \\ A_1^+ &= x_1^+ A_1^+(K^*) + y_1^+ A_1^+(a) \\ A_0^- &= x_0^- A_0^-(K^*) \\ A_1^- &= x_1^- A_1^-(K^*) + y_1^- A_1^-(f) \end{aligned}$$

where the superscripts \pm once again specifies $g = \pm 1$ and the subscripts 0 or 1 stand for *I*. The variables x_I^g and y_I^g are the unknown parameters in the problem. Note that an *isoscalar* X^0 cannot couple to $\pi^0 + f$, so that one must set $y_0^- = 0$. Consider next the amplitude corresponding to $\pi^- K_S K^+$. The complete amplitude is

$$A = \frac{1}{2\sqrt{6}} \left\{ x_0^+ \left[(\pi^- K^+)_* K_S + (\pi^- K_S)_* K^+ \right]_0 - x_1^+ \left[(\pi^- K^+)_* K_S + (\pi^- K_S)_* K^+ \right]_1 \right. \\ \left. + x_0^- \left[(\pi^- K^+)_* K_S - (\pi^- K_S)_* K^+ \right]_0 - x_1^- \left[(\pi^- K^+)_* K_S - (\pi^- K_S)_* K^+ \right]_1 \right\} \\ \left. + \frac{1}{4} \left\{ \sqrt{\frac{2}{3}} y_0^+ \left[\pi^- (K^+ K_S)_a + \pi^- (K_S K^+)_a \right]_0 - y_1^+ \left[\pi^- (K^+ K_S)_a + \pi^- (K_S K^+)_a \right]_1 \right\} \right\}$$

Similarly one finds, for the $\pi^+ K_S K^-$ amplitude,

$$\begin{split} A &= \frac{1}{2\sqrt{6}} \Big\{ x_0^+ \left[(\pi^+ K^-)_* K_S + (\pi^+ K_S)_* K^- \right]_0 + x_1^+ \left[(\pi^+ K^-)_* K_S + (\pi^+ K_S)_* K^- \right]_1 \right. \\ &\quad - x_0^- \left[(\pi^+ K^-)_* K_S - (\pi^+ K_S)_* K^- \right]_0 - x_1^- \left[(\pi^+ K^-)_* K_S - (\pi^+ K_S)_* K^- \right]_1 \right] \\ &\quad + \frac{1}{4} \Big\{ \sqrt{\frac{2}{3}} y_0^+ \left[\pi^+ (K^- K_S)_a + \pi^+ (K_S K^-)_a \right]_0 + y_1^+ \left[\pi^+ (K^- K_S)_a + \pi^+ (K_S K^-)_a \right]_1 \Big\} \\ &\quad \mathbb{C} \left[\pi^- K_S K^+ \right] \Longrightarrow |\pi^+ K_S K^- \right] \\ &\quad \{ x_0^+, x_1^-, y_0^+ \} \implies C = +1 \text{ eigenstates} \\ &\quad \{ x_1^+, x_0^-, y_1^+ \} \implies C = -1 \text{ eigenstates} \end{split}$$

Physics BNL

Hadron Spectroscopy—Mathematical Techniques

Beijing 2004

Flavor SU(3)

Irreducible Representations:

J. J. de Swart, Rev. Mod. Phys. <u>35</u>, 916 (1963).
G. E. Baird and L. C. Biedenharn, J. math. Phys. <u>4</u>, 1449 (1963); <u>5</u>, 1723 (1964).
S. U. Chung, E. Klempt, and J. K. Körner, Eur. Phys. J. A. <u>15</u>, 539 (2002)

Let D(p,q) be an irreducible representation characterized by two integers p and q. For a physically realizable representation, one must have p - q = 3n, where $n = 0, \pm 1, \pm 2, \pm 3, \ldots$ The number of basis vectors in an irreducible representation is given by the dimensionality N of the representation

(55)
$$N = (1+p)(1+q)\left[1+\frac{1}{2}(p+q)\right]$$

There are two Casimir operators F^2 and G^3 with the eigenvalues f^2 and g^3 . They are given by

(56)

$$f^{2} = \frac{1}{3} \left[p^{2} + q^{2} + p q + 3 (p+q) \right]$$

$$g^{3} = \frac{1}{18} (p-q) (2p+q+3) (2q+p+3)$$

So an irreducible representation can be equivalently characterized by $D(f^2, g^3)$ corresponding to the two Casimir eigenvalues.

 $Physics \\ \mathcal{BNL}$

See Table I for a few examples of practical importance.

Table I: Irreducible Representations of $SU(3)$						
N	1	8	10	$\overline{10}$	27	
(p,q)	(0,0)	(1,1)	(3,0)	(0,3)	(2, 2)	
(f^2,g^3)	(0,0)	(3,0)	(6,9)	(6, -9)	(8, 0)	

An eigenstate (or a wave function) belonging to an irreducible representation is given by the eigenvalues corresponding to a set of five commuting operators

(57)
$$\{F^2, G^3, Y, I^2, I_3\}$$

where *I* is the isotopic spin and *Y* is the hypercharge. It is conventional to use *I* and *Y* for both operators and eigenvalues. Thus, the eigenvalue for the SU(2) Casimir operator I^2 is I(I+1), and that for *Y* is just Y = B + S, but the eigenvalue for I_3 is denoted *m* here. Introduce new notations for convenience:

(58)

$$\mu = \{f^2, g^3\}, \quad \sigma = \{Y, I\}, \quad \text{and} \quad \nu = \{Y, I, m\}$$

Then, the eigenstate can be given a compact notation $\phi_{\nu}^{(\mu)}$.

 ${\cal BNL} {\cal BNL}$

Consider a product representation $D(p_1, q_1) \otimes D(p_2, q_2)$. It can be expanded as a direct sum of irreducible representations. The eigenstates of each irreducible representation in the expansion are given by

(59)
$$\psi \begin{pmatrix} \mu_1 & \mu_2 & \mu_\gamma \\ & \nu \end{pmatrix} = \sum_{\nu_1,\nu_2} \begin{pmatrix} \mu_1 & \mu_2 & \mu_\gamma \\ \nu_1 & \nu_2 & \nu \end{pmatrix} \phi^{(\mu_1)}_{\nu_1} \phi^{(\mu_2)}_{\nu_2}$$

following the notations used previously. The subscript γ is a label which distinguishes two irreducible representations with the same (p,q) or (f^2, g^3) , e.g. $\mathbf{8_1}$ and $\mathbf{8_2}$. The transformation matrix is real and orthogonal and given by

(60)
$$\begin{pmatrix} \mu_1 & \mu_2 & \mu_\gamma \\ \nu_1 & \nu_2 & \nu \end{pmatrix} = \begin{pmatrix} \mu_1 & \mu_2 & |\mu_\gamma \\ \sigma_1 & \sigma_2 & |\sigma \end{pmatrix} (I_1 m_1 I_2 m_2 |Im)$$

where the first element on the right-hand side is the SU(3) isoscalar factor and the second element is the usual SU(2) Clebsch-Gordan coefficient.

Four-quark $(q\bar{q} + q\bar{q})$ Vector Mesons:

Consider a decay process $X \to a_1 + a_2$, where X is a nonstrange $(q\bar{q} + q\bar{q})$ meson with $J^P = 1^-$ and $I^G = 1^-$ or $I^G = 1^+$. So X is an isovector (I = 1) meson, with both $J^{PC} = 1^{-+}$ or $J^{PC} = 1^{--}$ allowed. The decay products a_1 and a_2 belong to the ground-state 1S_0 octet, i.e. $\{\pi\} = \{\pi, K, \bar{K}, \eta\}$. We assume here that the η is a pure SU(3) octet and the η' is a pure SU(3) singlet. The following expansion gives relevant irreducible representations

$$\mathbf{8}\otimes\mathbf{8}=\mathbf{1}\oplus\mathbf{8_1}\oplus\mathbf{8_2}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\mathbf{27}$$

The Bose symmetrization requires that a *P*-wave meson couple only to antisymmetric wave functions of SU(3), i.e. 8₂, 10 and $\overline{10}$, as 1, 8₁ and 27 are symmetric under the interchange of a_1 and a_2 .

Antisymmetric Octet (8 ₂): $I^G = 1^+ \Longrightarrow J^{PC} = 1^{}$					
Y	Ι	Q	wave functions		
0	1	+1	$\sqrt{\frac{1}{3}} \left(\pi^+ \pi^0 - \pi^0 \pi^+ \right) - \sqrt{\frac{1}{6}} \left(\bar{K}^0 K^+ - K^+ \bar{K}^0 \right)$		
		0	$\sqrt{rac{1}{3}} \left(\pi^+ \pi^ \pi^- \pi^+ ight)$		
			$-\sqrt{\frac{1}{12}} \left(\bar{K}^0 K^0 - K^0 \bar{K}^0 \right) - \sqrt{\frac{1}{12}} \left(K^- K^+ - K^+ K^- \right)$		
		-1	$\sqrt{\frac{1}{3}} \left(\pi^0 \pi^ \pi^- \pi^0 \right) - \sqrt{\frac{1}{6}} \left(K^- K^0 - K^0 K^- \right)$		

Physics BNL

Physics BNL

Physics BNL

Let ϕ be the wave function for $\{\pi\pi\}$ systems. One concludes

$$\frac{1}{\sqrt{2}} \left[\phi(\mathbf{10}) + \phi(\overline{\mathbf{10}}) \right]_{+} = \frac{1}{\sqrt{2}} \left(\pi^{+} \eta - \eta \pi^{+} \right) \implies I^{G}(J^{PC}) = 1^{-}(1^{-+})$$
(62)
$$\frac{1}{\sqrt{2}} \left[\phi(\mathbf{10}) - \phi(\overline{\mathbf{10}}) \right]_{+} = \frac{1}{\sqrt{6}} \left(\pi^{+} \pi^{0} - \pi^{0} \pi^{+} \right) + \frac{1}{\sqrt{3}} \left(\bar{K}^{0} K^{+} - K^{+} \bar{K}^{0} \right)$$

$$\implies I^{G}(J^{PC}) = 1^{+}(1^{--})$$

Summarize:

Consider a nonstrange isovector $X(q\bar{q} + q\bar{q})$ with the quantum numbers of a vector meson $J^P = 1^-$. Its decay into $\{\pi\} + \{\pi\}$ should occur in a *P* wave. If SU(3) is conserved in the decay,

$$\begin{cases} \rho(\mathbf{8_2}) : I^G(J^{PC}) = 1^+(1^{--}) \to \{\pi\pi\}' + \{K\bar{K}\}'\\ \rho_x(\mathbf{10} - \overline{\mathbf{10}}) : I^G(J^{PC}) = 1^+(1^{--}) \to \{\pi\pi\} + \{K\bar{K}\}\\ \pi_1(\mathbf{10} + \overline{\mathbf{10}}) : I^G(J^{PC}) = 1^-(1^{-+}) \to \pi\eta\\ \pi_1'(\mathbf{8}) : I^G(J^{PC}) = 1^-(1^{-+}) \to \pi\eta' \end{cases}$$

(63)

Vector mesons ($J^P = 1^-$) in $q\bar{q} + q\bar{q}$ systems:

(64)
$$\{q\bar{q}\} = \mathbf{1} \oplus \mathbf{8}, \quad \{qq\} = \mathbf{\overline{3}} \oplus \mathbf{6}, \quad \{\bar{q}\bar{q}\} = \mathbf{3} \oplus \mathbf{\overline{6}}$$

and hence we must have

(65)

Physics BNL

$$\{q\bar{q}q\bar{q}\} = (\mathbf{1}\oplus\mathbf{8})\otimes(\mathbf{1}\oplus\mathbf{8}) = (\mathbf{3}\oplus\mathbf{6})\otimes(\mathbf{3}\oplus\mathbf{6})$$

= $2 \times \mathbf{1} \oplus 4 \times \mathbf{8} \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \mathbf{27}$

for a total of 81 states. There are two families of 81-plets, designated \mathbb{V}_{ζ} ($\zeta = \pm 1$), given by

$$\{\mathbb{V}_{-}\} = 61 \ 1^{--} \text{ self-conjugate members} \\ + 14 \text{ strange members of 10 and } \overline{10} \\ + 3 \ 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{-+} \text{ members of 10 and } \overline{10} \\ \{\mathbb{V}_{+}\} = 61 \ 1^{-+} \text{ self-conjugate members} \\ + 14 \text{ strange members of 10 and } \overline{10} \\ + 3 \ 1^{-+} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ members of 10 and } \overline{10} \\ + 3 \text{ egregious } 1^{--} \text{ egregious } 1^{-$$

Let χ be the wave function for any state in \mathbb{V}_{ζ} , and let χ^0 be its charge-neutral wave function. Then, we have

$$\mathbb{C} \chi^0(\mathbf{10}) = \zeta \chi^0(\overline{\mathbf{10}}), \quad \mathbb{C} \chi^0(\overline{\mathbf{10}}) = \zeta \chi^0(\mathbf{10})$$
$$\mathbb{G} \chi(\mathbf{10}) = -\zeta \chi(\overline{\mathbf{10}}), \quad \mathbb{G} \chi(\overline{\mathbf{10}}) = -\zeta \chi(\mathbf{10})$$

where we require $\zeta = \pm 1$. The *G*-parity eigenstates are

(67)

$$\chi_{\pm} = \frac{1}{\sqrt{2}} \left[\chi(\mathbf{10}) \mp \zeta \, \chi(\overline{\mathbf{10}}) \right], \qquad \mathbb{G} \, \chi_{\pm} = \pm \chi_{\pm}$$

Define \mathcal{H} to be the Hamiltonian that gives rise to the masses in the limit of exact SU(3). Then , one sees that

(69)
$$[F^2, \mathcal{H}] = 0, \quad [G^3, \mathcal{H}] = 0, \quad \mathcal{H} |\chi_{\pm}\rangle = M_{\pm} |\chi_{\pm}\rangle$$

We see that

(70)
$$G^{3} |\chi_{\pm}\rangle = 9 |\chi_{\mp}\rangle \implies \mathcal{H} |\chi_{\mp}\rangle = M_{\pm} |\chi_{\mp}\rangle$$

So we conclude $M_+ = M_-$.

Recall that ϕ is the wave function defined for $\{\pi\pi\}$ systems. Then we have

(71)
$$\phi_{\pm} = \frac{1}{\sqrt{2}} \left[\phi(\mathbf{10}) \mp \phi(\overline{\mathbf{10}}) \right], \quad \mathbb{G} |\phi_{\pm}\rangle = \pm |\phi_{\pm}\rangle$$

Consider now the decay $X \to {\pi\pi}$ in the limit of exact SU(3)

(72)

$$2A_{\pm} = 2\langle \phi_{\pm} | \mathcal{M} | \chi_{\pm} \rangle = [\langle \phi(\mathbf{10}) \mp \langle \phi(\overline{\mathbf{10}})] | \mathcal{M} | [\chi(\mathbf{10}) \rangle \mp \zeta \chi(\overline{\mathbf{10}}) \rangle]$$

$$= \langle \phi(\mathbf{10}) | \mathcal{M} | \chi(\mathbf{10}) \rangle + \zeta \langle \phi(\overline{\mathbf{10}}) | \mathcal{M} | \chi(\overline{\mathbf{10}}) \rangle$$

$$(\mathbb{G}^{\dagger} \mathbb{G} = I, \ \zeta^{2} = 1) \rightarrow = 2\langle \phi(\mathbf{10}) | \mathcal{M} | \chi(\mathbf{10}) \rangle$$

So we conclude $A_+ = A_-$ or $\langle \phi_+ | \mathcal{M} | \chi_+ \rangle = \langle \phi_- | \mathcal{M} | \chi_- \rangle$.

Summarizing, in the limit of exact SU(3), the observation of $I^G(J^{PC}) = 1^-(1^{-+})$ $\pi_1(1400) \to \pi\eta$ implies that the $\pi_1(1400)$ must belong to the $\mathbf{10} \oplus \overline{\mathbf{10}}$ representation of \mathbb{V}_{ζ} . And there must exist its partner $I^G(J^{PC}) = 1^-(1^{--}) \rho_x(1400) \to {\pi\pi} + {K\bar{K}}$ at the same mass and with the same decay strength. For example, we must have

$$g^{2}\left(\pi_{1}^{+}(1400) \to \pi^{+}\eta\right) = \frac{1}{3}g^{2}\left(\rho_{x}^{+}(1400) \to \pi^{+}\pi^{0}\right) + \frac{2}{3}g^{2}\left(\rho_{x}^{+}(1400) \to K^{+}\bar{K}^{0}\right)$$

where g^2 is the coupling constant squared.

 $Physics \\ \mathcal{BNL}$

Classification of a general decay $X \to {\pi} + {\pi}$:

SU(3) Multiplet	J^{PC}	Composition
Singlet (1)	even ⁺⁺	$qar{q}$, $qar{q} + extbf{gluon}$, $qar{q} + qar{q}$
Symmetric Octet (8_1)	even ⁺⁺	$qar{q}$, $qar{q}+ extbf{gluon}$, $qar{q}+qar{q}$
Antisymmetric Octet (82)	odd	$qar{q}$, $qar{q} + {f gluon}$, $qar{q} + qar{q}$
Multiplet 20 ($10 + \overline{10}$)	odd^{-+}	qar q + qar q
Multiplet 20 ($10 - \overline{10}$)	odd	qar q + qar q
Multiplet 27	even ⁺⁺	$qar{q}+qar{q}$

M	lu	litr	Зl	et	2	0:
					_	

Quantum Numbers	Multiplicity	Ι	S
$J^P = 1^-$	8	3/2	±1
$J^{P} = 1^{-}$	4	1/2	± 1
$J^{P} = 1^{-}$	2	0	± 2
$J^{PC} = 1^{}$	3	1	0
$J^{PC} = 1^{-+}$	3	1	0

Gluons in QCD

Quantum chromodynamics (QCD), the field theory of strong interactions for colored quarks and gluons, is based on the group SU(3) of color. The Lagrangian is

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F^a_{\ \mu\nu} F^{a\ \mu\nu} + i\bar{\psi}^i_k \gamma^\mu (D_\mu)_{ij} \psi^j_k$$
$$- m_k \,\bar{\psi}^i_k \,\psi^i_k - \frac{1}{(8\pi)^2} \,\theta_{\text{QCD}} \,\epsilon^{\mu\nu\alpha\beta} F^a_{\ \mu\nu} \,F^a_{\ \alpha\beta}$$

where

(73)

(74)

$$F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + g_{s} f_{abc} A^{b}_{\mu} A^{c}_{\nu}$$
$$(D_{\mu})_{ij} = \partial_{\mu} \delta_{ij} - \frac{i}{2} g_{s} \lambda^{a}_{ij} A^{a}_{\mu}$$

Here the ψ_k^i is the 4-component Dirac spinor for each quark with color index $i = \{1, 2, 3\}$ and flavor index $k = \{1, 6\}$, and A_{μ}^a is the gluon field with the index $a = \{1, 8\}$. g_s is the QCD coupling constant, i.e. $\alpha_s = g_s^2/(4\pi)$; the f_{abc} is the usual structure constant of the SU(3) algebra, and λ_{ij}^a is the generator of the corresponding SU(3) transformations, so it is a 3×3 matrix with $a = \{1, 8\}$ and $i, j = \{1, 2, 3\}$; and m_k , again with $k = \{1, 6\}$, is the current-quark mass introduced in the previous section.

QCD is a gauge field theory with just two parameters g_s and $\theta_{\rm QCD}$.

The Flux-Tube Model

N. Isgur and J. Paton, Phys. Rev. D 31 (1985) 2910;
N. Isgur, R. Kokoski and J. Paton, Phys. Rev. Lett. 54 (1985) 869;
F. E. Close and P. R. Page, Nucl. Phys. B 443 (1995) 233;
T. Barnes, F. E. Close and E. S. Swanson, Phys. Rev. D 52 (1995) 5242.

Let *L* and *S* be the orbital angular momentum and the total intrinsic spin of a $q\bar{q}$ system. Let s_1 and s_2 be the spins of q and \bar{q} , i.e. $s_1 = s_2 = 1/2$. Then, one readily finds

(75)
$$\vec{J} = \vec{L} + \vec{S}$$
 and $\vec{S} = \vec{s_1} + \vec{s_2}$

and

(76)
$$P = (-)^{L+1}, \quad C = (-)^{L+S}, \quad PC = (-)^{S+1}$$

and the wave function in a state of J, L and S is given by

(77)
$$|JMLS\rangle = \sqrt{\frac{2L+1}{4\pi}} \sum_{\substack{m_1 \ m_2 \\ m_s \ m}} (s_1 m_1 s_2 m_2 | Sm_s) (Sm_s LM_L | JM) \times \int d\Omega D_{M_L 0}^{L*} (\phi, \theta, 0) |\Omega, s_1 m_1 s_2 m_2 \rangle$$

where *M* is the z-component of spin *J* in a coordinate system given in the rest frame of $q\bar{q}$ and $\Omega = (\theta, \phi)$ specifies the direction of the breakup momentum in this rest frame.

In the flux-tube model pioneered by Isgur and Paton and an excited gluon in $q\bar{q} + g$ is described by two transverse polarization states of a string, which may be taken to be clockwise and anticlockwise about the $q\bar{q}$ axis. Let $n_m^{(+)} [n_m^{(-)}]$ be the number of clockwise (anticlockwise) phonons in the *m*th mode of string excitation.

Two important quantities are defined from these

(78)

$$\Lambda = \sum_{m} \left\lfloor n_m^{(+)} - n_m^{(-)} \right\rfloor, \qquad N = \sum_{m} m \left\lfloor n_m^{(+)} + n_m^{(-)} \right\rfloor$$

It is clear from the definition that Λ is the helicity of the flux tube along the $q\bar{q}$ axis. The number N is a new quantity; it will be given the name 'phonon number'—as it represents the sum of all the phonons in the problem weighted by the mode number m. The wave function in the flux-tube model is given by

$$|JMLS\{n_{m}^{(+)}, n_{m}^{(-)}\} N \Lambda\rangle = \sqrt{\frac{2L+1}{4\pi}} \sum_{\substack{m_{1} m_{2} \\ m_{s} M_{L}}} (s_{1}m_{1} s_{2}m_{2}|Sm_{s}) (Sm_{s} LM_{L}|JM)$$
$$\times \int d\Omega D_{M_{L}\Lambda}^{L*}(\phi, \theta, 0) |\Omega, s_{1}m_{1}; s_{2}m_{2}; \{n_{m}^{(+)}, n_{m}^{(-)}\} N \Lambda\rangle$$

(79)

There are a set of five rotational invariants specifying a state in the flux-tube model, i.e. J, L, S, N and Λ . Note $|\Lambda| \leq L$.

Physics BNL

The relevant quantum numbers are

$$P = \eta_0 (-)^{L+\Lambda+1}, \quad C = \eta_0 (-)^{L+S+\Lambda+N}, \quad PC = (-)^{S+N+1}$$

where $\eta_0 = \pm 1$. Remark: if $n_m^{(+)} = n_m^{(-)}$, then $\Lambda = 0$ and $\eta_0 = +1$. Examples are given in tabular form. The lowest-order gluonic hybrid mesons are

$n_1^{(+)}=1$ and $n_1^{(-)}=0;$ $N=1$ and $\Lambda=1$						
L	S	$^{2S+1}L_J(q\bar{q})$	$J^{PC}(q\bar{q})$	$J^{PC}(q\bar{q}+g)$		
1	0	${}^{1}P_{1}$	1+-	1++		
				1		
1	1	$^{3}P_{J}$	0++, 1++, 2++	0 ⁻⁺ , 1 ⁻⁺ , 2 ⁻⁺		
				0+-, 1+-, 2+-		
2	0	${}^{1}D_{2}$	2^{-+}	2++		
				2		
2	1	$^{3}D_{J}$	1, 2, 3	1-+, 2-+, 3-+		
				1+-, 2+-, 3+-		

Physics BNL

Hadron Spectroscopy—Mathematical Techniques

An example of $n_m^{(+)} = n_m^{(-)}$ for m = 1 is given below:

$n_1^{(+)}=1$ and $n_1^{(-)}=1;$ $N=2$ and $\Lambda=0$						
L	S	$^{2S+1}L_J(q\bar{q})$	$J^{PC}(q\bar{q})$	$J^{PC}(q\bar{q}+g)$		
0	0	${}^{1}S_{0}$	0-+	0-+		
0	1	${}^{3}S_{1}$	1	1		
1	0	${}^{1}P_{1}$	1+-	1+-		
1	1	$^{3}P_{J}$	0++, 1++, 2++	0++, 1++, 2++		

Another case of interest:

$n_2^{(+)}=1$ and $n_2^{(-)}=0;$ $N=2$ and $\Lambda=1$						
L	S	$^{2S+1}L_J(q\bar{q})$	$J^{PC}(qar q)$	$J^{PC}(qar q+g)$		
1	0	${}^{1}P_{1}$	1+-	1+-		
				1-+		
1	1	$^{3}P_{J}$	0++, 1++, 2++	0++, 1++, 2++		
				0, 1, 2		