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Review
e One-Particle States at Rest

(1) UlR(e, B,7)] [gm) = Zl]m T‘n/ (o, B,7)

e Relativistic One-Particle States

Canonical: |p,jm) = U[L(p" )] |im)

= U[R(6,0,0)] UL (p)] U [R(6,6,0)] |jm)

(2) 0
Helicity: |, jA) = U[R(¢,6,0)]U[L=(p)] 7))

= U[L(F)] U[R(¢,6,0)] i)

Canonical states transform like the states at rest.
Helicities are rotational invariants. Helicity frame: z;, oc p'and 43, o< z' X 2},

e Parity and Time-Reversal Operations

e Two-Particle States
* Construction (canonical and helicity); Normalization
* Recoupling coefficients; Symmetry relations
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Review

e Applications
* Cross-section and Width formulas

* 2- and 3-body relativistic kinematics and phase space:

1 »p 4
d 1,2) = —dQ d 1,2.3) = dR dFE>dFE
(3) ¢2( ) ) (47_‘_)2 w ) ¢3( y Ay ) (47_‘_)5 (04,/677) 2 3
dw?
(4) dqbn:dqbg(c,m—i—l,---,n)(Q )dqu(l,Z,---,m),
T

*x S-matrix fora +b — c+ d
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Review
e Applications—continued
* 2-body decays:

Consider |JM) — |p;s1 X2) + | — ;52 A2), where 5 = p(0, ¢),

A, (M;Q) = (PA1; —pA2| M| T M)

®) 2J +1
= NyF3 0, D (@,0,0) . Ny =1/ =—, A=X =2,
where
1
20411\ 2
J o _ J
(6) F{ ., = ; <2J - 1) a;l, (L0 sA|JN) (s1A1 52 —Aa|sA) ,
Zemach amplitudes:  aj o p*
Modern Methods: a] < Fy(p/py) (Blatt-Weisskopf barrier factors)
The symmetry relations are
N F{a, =mmm(=) TR, 0 B, = (),

* 3-body decays; Dalitx-plot analysis
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Review
e Decay Modes: Examples
* Two-pion decays; three-pion decays
p — mm and w — 7 have an identical decay amplitude,

if the 37~ normal is chosen for the w decay.

* Decays into pr and wm
p and w decays described in the helicity frame
Requires introduction of the Breit-Wigner functions for p and w

* Decays modes with photons in the final states
Spin-1 particles do not couple to two-photon final states.

e Density Matrix
* Density Matrix in the Reflectivity Basis:

The indices (i,5) = {x m} where m > 0and (i,5) = 1,---, N¢
Ke

(®) Pij=> Vi Vi, = p=VV, = p=<p
k=1
* General Angular Distributions in the Reflectivity Basis:
{xm}=1,---, Ne and{x’m’}zl +++, N

©) O‘Z Z “pXX' DX (1) “DX,*(r)

Xm
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Review

e Maximum-Likelihood Method
x Extended Likelihood functions

(10) a={ek;xm} and o = {ek;x' m'}

1) InL=) In [Z Va V3, Da(Ti) DZI(%‘)] —> Vo Vi YL,

where the experimental normalization integral is given by

a2 Ve = [ [Dan) DL )] () 6(r) dr

In terms of the full normalization integral,

3 Voo = [ [Da(r) Do) () dr
the predicted numbers of events are

(14) N = Z Va Vo Yoo
oo
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| sotopic Spin
The QCD Lagrangian:

gz..._zqulﬁélpé...
q 7

where ¢ = color index (1-3), ¢ = flavor index (1-6) and m, = ‘current-quark’ mass.

U 1-5 MeV

d 3-9 MeV

. 25170 MeV/ flavor SU(2) : (u,d)
flavor SU(3) : (u,d,s)

c 1.15-1.35 GeV flavor SU(4) : (u,d,s,c)

b 4.0-4.4 GeV

t 174.3 £5.1 GeV

Constitutent light-quark mass= (mgq + m.,)/2 = 220 MeV
Constitutent strange-quark mass= ms = 419 MeV

S. Godfrey and N. Isgur, Phys. Rev. D32, 189 (1985)
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C- and G-Parity: A new Defi nition and Applications

C- and GG-Parity Operations:

We shall adopt a notation ‘a’ to stand for both the baryon number B and hypercharge
Y. Anti-particles are denoted ‘a’, so that

Y

(15) a=(B)Y), a=(BY)=(-B,-Y)

In addition, we shall use y to denote Y/2;

Yy 1
(16) y=-=5(B+S9), Q=y+v
2 2
where S, @, v are the strangeness, the charge and the third component of isospin,

respectively.
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Let I be the isospin operator. Then, we have
(17) i, 1] = i€k I

We start with a state having an isospin ¢ and its third component v which transforms
according to the standard |jm) representation, so that

I.|lov) = v|ov)
(18) Ii|lov) = Fyi(v)lov+1)
I’lov) = oo+ 1)|ov)
where [+=1,+ I, and
(19) Fr(v) =+ (cFv)(c+v+1)

Note that F'y (v) = F( —). We shall require that anti-particle states transform in the
same way as their particle states according to the standard representations given above.

The C operation changes a state |av) to |a —v). (We use a shorthand notation
where the isospin o is omitted from a more complete description of the state |acov).) If
anti-particle states are to transform in the same way as particle states, it is necessary
that one define an anti-particle through the G operation. The key point is that G is
defined so that its operation does not perturb the v quantum number.

I’hysics
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To define the G operator, we need to first introduce a rotation by 180° around the y-axis:

U?[Ry(m)] = (=)*7, U™ [Ry(m)] = (=)*7 U[Ry ()],
UlRy(m)]lov) = (=) "]|o —v)

(20)

It will be shown later that R, (7) commutes with the C operator. We therefore define
the GG operator through

(21) G = CU[Ry(m)] = U[Ry(m)]C, C=(=)*?U[Ry(n)]G
We are now ready to define an anti-particle state via

Glav) = glav)
(22)
Glav) = glav)

and require that g and g be independent of v~ and furthermore that an arbitrary isospin
rotation R(«, 3,v) commutes with G

3 UlR(a,3,7)],6] =0
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The action of C on particle and anti-particle states is

Clav)
Clav) =

(24)

g(—=)7|a —v)
g(—

)7 a —v)

It is customary to define C such that C? = I, in which case
(25) 99(—)* =1

For hadrons, we shall define g and g via

(26) g=n(=)"7, g=mn(=)¥"°

while for quarks,
(27) g = n(_)B+y+a g = n(_)B—Hj—I—J

)

Note that the exponents in these expressions are always integers.
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The quantity F' defined by

1 1
(28) 5F:B+y:§(3B+S)

will be termed the ‘intrinsic flavor’ of a particle. Note that the intrinsic flavor is always an
integer, as shown in the following table:

(1]
>

states ‘ U d S s N K p n A b3

It is seen that the intrinsic flavor of an anti-particle is the negative of that of the particle,
i.e. ' = —F. With these definitions, we can make n a real number and let it take on
values of +1 or—1, so that n? = +1. Then, we have, since C? = +1 and gg(—)?° = +1,
(29) G? = (—)*°

conforming to the standard expressions.
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From the actions of the C on |av) and |av) as defined previously, it is easy to work
out the commutation relations between C and I;

(30) {C, I} ={C,I,} =0, [C,I,]=0

In other words, C anti-commutes with I, and I, while it commutes with I,,. This gives a
ready justification of the definition of G-parity. We can further deduce that, since
rotations commute with G, i.e. GU[R(«, 8,7)] = U[R(e, 8,7)] G,

(31) CU[R(a, B,7)]C™" = U[Ry(m)] U[R(ex, B,7)] U~ [Ry ()]
This shows that the actions of I-spin rotation under charge-conjugation can be

expressed in terms of I-spin 90° rotations.
Recapitulate:

(32)

For quarks, replace y = (B+ S5)/2 —- B+y = (3B + S)/2and
y=(B+8)/2— B+ iy = (3B+ S)/2. Conclude: 7 is the charge conjugation of the
nonstrange neutral members of any meson family of SU(3). [Note G = C(—)" ]

I’hysics
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| Asan example, Consider the members of the ‘pion’ SU (3) family, i.e. {r}.
We set n = +1 and find

CT{'ZI::—T(':F, (C7TO:—|—7TO, Cn = +n, Cn' =+n

(33)
T = —, Gn=+n
and + 0 0
c (KT _(+K o K_ _ (K
" KY —K° K + KT
) - Kt (-K° - K\ (4Kt
KO) \-K— )’ K-) \+K°

Note that C? = I and G2 = —1I, consistent with the usual results as applied to the states
with I = 1/2. For the {p} SU(3) family, we must set » = —1, so that

(jpj:;:;ﬁ_pq:7 (jpo ::__p07 (ja):: —Ww, (j¢):: _1ﬁ

(35)
G p = +p, Gw=—w
and _
c K*—l— - _K*— c K*O B —I—K*O
K*O - —|—I_{*O ) K*— - _K*—l—
(36) )

K*T KO K*0 —K*T
G 0 — * — ) G — - 0
shysics

BN L Hadron Spectroscopy—Mathematical Techniques Beijing 2004 ~pl4




Two-Particle States:

We shall work out here the effect of C' and GG operations on a particle-antiparticle
system in an eigenstate of total isospin, total intrinsic spin, orbital angular momentum
and total spin. We use the notations I, .S, ¢ and J for these quantum numbers. (Note that
I was used as an isospin operator and S denoted strangeness in section2.) Each
single-particle state in the two-particle center-of-mass(CM) system will be given a
shorthand notation,

a

(37) |CL,—|—E, V1,m1> = | ,—I—IZ, 0'11/1,81m1>
a, —k,

|a’a_k7’/27m2> = |a, — 02V2782m2>

where k is the 3-momentum of the particle in the CM system, and o1 and s; are isospin
and spin of the particles 01 = 02 = o and s; = s2 = s.

The two-particle system in a given state of |/v) and |£SJ M) is given by

laav) = Z (orvio2ve|Iv)(s1mysama|Sms)(Smsbm|J M)
(38) m1 m2

< [ AR VAR lo,+F, 01, )@, —F, vz ma)

where Y% (k) is the usual spherical harmonics.

I’hysics

BN L Hadron Spectroscopy—Mathematical Techniques Beijing 2004 ~p.i5




VVCT 11ULC

V1+V2‘a

Cla, —|—E, v, mi)la, —E, V2, ma) —I—E, —v1,m1)la, —E, —V,m3)

122810 ke, ma)|a, +k, —v1,mi)

—

G|a, +k, vi,mi)|a, —k,v2, ma)

(—)
(=)”
(—)?7|a, +k,v1,m1)|a, —k, va2, ma)
(—)

U+28\a, —k, V2, m2)|a, —I—E, vi,mi)

where the second lines have been derived by interchanging two wave functions, which
brings in a factor (—)?#, positive for mesons and negative for fermions.

The effect of C and G on the two-particle states can now be worked out. By
interchanging the subscripts 1 and 2 and by the operation k — —k, we obtain

Claav) = (=)t jaa —v)
(39)
(=

G|aav) VeS| aav)

where we have used the relationship Y2 (—k) = (=)’ V£ (k) and the following formulas
for the Clebsch-Gordan coefficient
(0'2 — V01 — I/1|[l/) = (0‘1V10‘21/2‘IV)
(oovooiv|Iv) = (—)1_2" (o1viogve|lv), o1 =09 =0

(somasimi|Sms) = (—)5_23 (s1misama|Sms), s1 =S2 =35

I’hysics
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We next work out the effect of the parity operation(II) on the two-particle states.
Since antifermions have opposite intrinsic parities to those of their fermion partners, the
IT operation brings in the factor (—)2*. In addition, the 3-momentum k changes sign
under the II operation. Therefore, we have

(40) H|a,—|—l;, vi,m1)la, —E, Vo, ma) = (—)28 a, —E, vi, m1)la, —|—l;, V2, Mm2)
So, again by using the operation k — —k, we obtain the familiar result

(41) |aav) = (—=)*T2¢ |aav)

It follows from (31) that a particle-antiparticle with » = 0 is in an eigenstate of C with
its eigenvalue (—)“*°. This result applies to all neutral NN, ¢, KK and 7 systems,
with S = 0 for dikaon and dipion systems. For all v, a particle-antiparticle system has the
G-parity equal to (—)*T°>+1, Charged NN, qq, KK systems have I = 1, so that their
G-parity is (=)¢+5+1! (again S = 0 for dikaons). Since the G-parity is +1 for dipions,
one has 7/ + I = even for any w7 system. For all v, the intrinsic parity of a
particle-antiparticle system is given by (—)¢*22.

I’hysics
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(KKm)Y Systems:

This case represents an example of a nontrivial application of the C- and G-parity
operators introduced thus far. We start with the K * intermediate systems. A K* decays
into a 7K. For K*’s with positive strangeness, one has

K*T = \/> TKO - \/7 O+
K*0 :\/jﬂOKO— —7'('_K+
3 3

and for negative strangeness

(42)

(43)

One uses a convention in which ordering of particles signifies different momenta, so that
one must keep track of it with care.
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It is seen that the C and G operators act on K*’s in the following way:

K*—|— _K*— [_(*0 —I—K*O
o e()-(RE) e (5=
and

K*—|— ‘I‘[_{*O [_(*O _K*—|—
@ (o) (T ) € () = (Te)

Let AY(K*) stand for the decay amplitude X° — (K Km)Y where I is the isospin of
the X and g its G-parity

(46) A9(K*) = % [(K**K‘ 4 gR*OK0) — (0) (K*OK° +gK*_K+)]
and
(47) GAJ(K*)=gAJ(K*), CAJK")=g(—)" AJ(K")

I’hysics
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Introducing the K* decays, one sees that
* 1 — — I
AY(K >=\@{ (T KO K™ 4 g(=)! (nm KO). K|
+ () [T K RO+ g(—) (nFKT). K| }

= @ { (K. K™ 4 g(—)! (K ). K

+ () [(OK®). RO+ g(—)! (-°K®). K°] }

(48)

We next consider two different intermediate states involving K K. Let a’s refer to

a0 (980), a2(1320) and other /& = 1~ objects, and f’s stand for either fo(980),
f2(1270) or other I“ = 01 states. They are given by

1 _ _
a® = 5 [KTK™ + KK + (K°KY + K~ K™)]
(49) T T
a” = \/; [K°K™ + K~ K°], af = \/; [KTK® + KPK™]
where Ga = —a and Ca® = 44 as it should be.

I’hysics
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and
(50) f= % [KTK™ — KK — (K°KY — K~ K™)]

sothat Gf = +f and Cf = +f. Again, let A7(a) and A7 (f) refer to the decay
amplitude for X — o +7and X — f + 7

1
A(J)r(a,) — \/; (7r7L a” —mlal + 77 a,"")

_ \/g [W+(KOK_)a + (KK o4n (KT K®), + W_U_(()Kﬂa}

&) —/ % [WO(K+K_)G + 7 (KOK®) o+ (KO K)o + wO(K—Kﬂa}
1 -
Af (a) = \/; (7r7L a —T a+)

= (R ROK ) (K (R Ry — 7 (ROKH), ]

and
(52) A7 (f) = % [O(KTK™); — m9(K°K®); — n%(K K% + 7O(K~KT)/]

One sees that CAJ (a) = + A7 (a), CAT (a) = —A] (a) and CAT (f) = +A (f).

I’hysics
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The complete decay amplitude for X° — (K K7)°? may now be written
(53) 24 = Al + AT + Ay + AT
where
Ay = ag AT (K*) +yf A (a)
AT =z AT (K*) + vy AT (a)
AO_ = x4 AO_ (K*)
p =xp AL (K7) +yy AL (f)

where the superscripts £ once again specifies g = 1 and the subscripts 0 or 1 stand
for I. The variables =7 and y7 are the unknown parameters in the problem. Note that an
isoscalar X cannot couple to 7° + f, so that one must set y, = 0.

(54)

I’hysics
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Consider next the amplitude corresponding to =~ K g K. The complete amplitude is

1
4= %{“’3 [(W_K+)* Kg + (7 Kg)« K+]0 - wii_ [(W_K+)* Kg + (77 Kg)x K+]1

tay [(FTKT) Ky = (n7Kg)e K¥] g —ay [(77 K ) Kg = (n7 Kg)« K],

+i{ %yar [T (KYKg)a+ 7 (KKt )], — vi [7m (KT Kg)a+7 (KgK)al, }

Similarly one finds, for the = K, K~ amplitude,

A= ﬁ{x:{ (7T K7 )u Kg + (n T Kg)« K]y +af [(7TK™)u Kg + (7T Kg)« K]

—ay [(TE ) Ky = (7K K]y [ KO K — (PR K], )

—|—i{ gy(;L [7T+(K_Ks)a+7r+(KSK—>G]O+yi— [77+(K_Ks>a+77+(KsK_>a]1}

Clrm K KT) = |[7T K K™)

{zd, z],ys } = C = +1 eigenstates
(¢, z;, v} = C = —1 eigenstates

I’hysics
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Flavor SU(3)

Irreducible Representations:

J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
G. E. Baird and L. C. Biedenharn, J. math. Phys. 4, 1449 (1963); 5, 1723 (1964).
S. U. Chung, E. Klempt, and J. K. Kérner, Eur. Phys. J. A. 15, 539 (2002)

Let D(p, q) be an irreducible representation characterized by two integers p and gq.
For a physically realizable representation, one must have p — ¢ = 3 n, where
n = 0,%1,£2,+3,.... The number of basis vectors in an irreducible representation is
given by the dimensionality NV of the representation

(55) N=(1+p)(1+q) {1+%(p+Q)]

There are two Casimir operators F'? and G with the eigenvalues 2 and ¢>. They are

given by
f2== [P+ +pg+3p+9)]

g3

(56)

_ =

E(p—q)(2p+q+3)(2qﬂtp+3)

So an irreducible representation can be equivalently characterized by D(f?, ¢3)
corresponding to the two Casimir eigenvalues.
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See Table | for a few examples of practical importance.

Table I: Irreducible Representations of SU(3)

N 1 8 10 10 27
(p,q) | (0,0) (1,1) (3,00 (0,3) (2,2
(f2793) (070) (370) (6a9) (67 _9) (870)

An eigenstate (or a wave function) belonging to an irreducible representation is given
by the eigenvalues corresponding to a set of five commuting operators

(57) {F?2, G3,Y, I?, I3}

where [ is the isotopic spin and Y is the hypercharge. It is conventional to use I and Y
for both operators and eigenvalues. Thus, the eigenvalue for the SU (2) Casimir operator
I?is I(I + 1), and that for Y is just Y = B + S, but the eigenvalue for I5 is denoted m
here. Introduce new notations for convenience:

(58) p={f%g¢}, o={Y, I}, and v={Y, I, m}

Then, the eigenstate can be given a compact notation qb(,’f).

I’hysics
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Consider a product representation D(p1,q1) ® D(p2, q2). It can be expanded as a
direct sum of irreducible representations. The eigenstates of each irreducible
representation in the expansion are given by

=) w(ﬂl 2 MJ) _ Z (Ml 2 M:) qb(ﬁll)gb(,’ff)

vy U2
v,V

following the notations used previously. The subscript ~ is a label which distinguishes
two irreducible representations with the same (p, q) or (f2, ¢3), e.g. 81 and 85. The
transformation matrix is real and orthogonal and given by

©0) (m 42 Lw) _ (m I

V|, U2 1 01 02
where the first element on the right-hand side is the SU(3) isoscalar factor and the
second element is the usual SU(2) Clebsch-Gordan coefficient.

o

Hoy ) (I1mq Iama|Im)

I’hysics
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Four-quark (gq + qq) Vector Mesons:

Consider a decay process X — aj + a2, where X is a nonstrange (¢q + qq) meson
with J¥ =1~ and I =1~ or I = 17. So X is an isovector (I = 1) meson, with both
JPC¢ =1t or J¢ = 1~ allowed. The decay products a; and a> belong to the
ground-state 'Sy octet, i.e. {7} = {7, K, K, n}. We assume here that the n is a pure
SU (3) octet and the ' is a pure SU (3) singlet. The following expansion gives relevant
irreducible representations

(61) 8R8=1081 8 ®10®d 10 H 27
The Bose symmetrization requires that a P-wave meson couple only to antisymmetric

wave functions of SU(3), i.e. 82, 10 and 10, as 1, 81 and 27 are symmetric under the
interchange of a; and as.

Antisymmetric Octet (82); ¢ =17 = JP¢ =1——

Yy I} Q wave functions

0O 1| +1 \/g(ﬂ'—i_ﬂ'o—ﬂ'oﬂ'—i_)—\/%(I_{OK"F—K“‘[_{O)

0 \/g (7T+ T =T 7T+)

—y/ 75 (KOK® - KOKO) — /& (K- Kt — KT K™)

1|/t (@07 a0 — /(K KO~ KOK™)

I’hysics
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An example of a self-conjugate representation: {7}
n=+1,C|r% =n|x% and C|av) =n(=)°/2""|a —v), where I3 = {v}

S
A

K~ KO

I’hysics

BN L Hadron Spectroscopy—Mathematical Techniques Beijing 2004 ~p.28




Eigenstates in the irreducible representations of 10 ¢ 10:

S

A
3
42
O © 1t © O
+1
> I3
2 -1 0o +1 42
O © + ©O O
~1
P
—2 O : 10
o :10

I’hysics
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Antisymmetric: 10
Y I Q wave functions
0O 1] +1 %(WWLWO—WOW"‘)—I—% (I_(OK+—K+I_(O)+% (7r+77—n7r+)
0 % (7r7L T — T 7r+)
+y/5 (KOKY—KOKO) + /& (K- Kt —KtK~)+ % (70—
—1 %(Woﬂ_—ﬂ_ﬂo)ﬁ-% (K_KO—KOK_)—I—% (7T_77—777r_)
Antisymmetric: 10
Y I Q wave functions
O 1| -1 | — %(7‘(’071'_—7'('_71'0) % (K KO — KOK_)—i—% (7'('_77—777'('_)
0| — % (7‘(‘+ T — T 7T+)
—/5 (KK —K°K%) — /L (K- KT—KtK~)+ 1 (n"0—n
+1 | — %(W+7TO—7rO7T+) % (I(OKWL K+K0)—I—% (7r+77—n7r+)
Zhﬁf?“ Hadron Spectroscopy—Mathematical Techniques Beijing 2004 ~ p.30



Let ¢ be the wave function for {w7} systems. One concludes

75 000 +6(10)] = 2 (Fa-nrt) = 1C0T =170
62 L T A _LW+7T0_7T07T+ - I
\/§_¢(10) ¢(10)-+_\/6( )+\/§(KK KT K°)
— U9 =1ta")
Summarize:

Consider a nonstrange isovector X (qq + qg) with the quantum numbers of a vector
meson JP = 1~ Its decay into {w} + {7} should occur in a P wave. If SU(3) is
conserved in the decay,

) ) 177) — {mm} +{KK}
) ) 177) — {nm} +{KK}
(63) 9
(10 +10): I(JP)Y =171"1) —
(8) ) (=)

/

— TN
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Vector mesons (JX = 17) in ¢g + ¢g systems:

(64) {97} =1®8, {qq} =3d6, {qq}=3®6

and hence we must have

{9393} = (108)® (12 8)=(3©6)® (3D 6)
—2x1 @ 4x8 & 10 & 10 & 27

(65)

for a total of 81 states. There are two families of 81-plets, designated V- (¢ = £1), given

by
{V_} =611 self-conjugate members
+ 14 strange members of 10 and 10
+ 317~ members of 10 and 10
) + 3egregious 1~ 7 members of 10 and 10

{V4} =611 T self-conjugate members
+ 14 strange members of 10 and 10
+ 31 1 members of 10 and 10

+ 3egregious 1~ members of 10 and 10
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Let x be the wave function for any state in V., and let x" be its charge-neutral wave
function. Then, we have

Cx"(10) =¢x"(10), Cx°(10) =¢x"(10)

(67) _
Gx(10) = =¢x(10), Gx(10)=—(x(10)

where we require ( = +1. The G-parity eigenstates are

1 _
(68) Xy = E [X(lo) + CX(]-O)] ) GXi = iXi

Define H to be the Hamiltonian that gives rise to the masses in the limit of exact SU (3).
Then , one sees that

(69) [F?,H] =0, [G°,H]=0, Hlx,)=M,|x,)
We see that
(70) G lxy) =9Ix5) = Hlxs) =M, [xs)

So we conclude M = M_.
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Recall that ¢ is the wave function defined for {77} systems. Then we have

) b, = % [6(10) F 6(10)], Glo,) = £|6, )

Consider now the decay X — {==} in the limit of exact SU (3)

244 = 2(¢4 [Mlxy)
= [(¢(10) F (¢(10)] [M] [x(10)) F ¢ x(10))]
= (¢(10)|M|x(10)) + ¢ ($(10)| M|x(10))
(GTG =1, ¢* =1) — = 2(¢(10)| M|x(10))

(72)

So we conclude Ay = A_ or (¢, [M|x,) = (¢_|M][x_).

Summarizing, in the limit of exact SU(3), the observation of IG(JF¢) = 1—(1—71)
71 (1400) — 77 implies that the 71 (1400) must belong to the 10 @ 10 representation of
V. And there must exist its partner I¢(JF¢) = 17(177) p,(1400) — {77} + {KK}
at the same mass and with the same decay strength. For example, we must have

1 2 _
g (wj(1400) = 7T+77) =29’ (@(1400) — 7T+7T0) + 50 (p;L(14OO) - K+K0)

where g2 is the coupling constant squared.
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Classification of a general decay X — {n} + {=}:
SU(3) Multiplet JrPc Composition
Singlet (1) even™™ | ¢q, q7 + gluon, ¢7 + ¢
Symmetric Octet (81) even™t | qq, q@ + gluon, qq + qq
Antisymmetric Octet (82) | odd™ qq, q@ + gluon, qq + qq
Multiplet 20 (10 + 10) odd™" | q7+qq
Multiplet 20 (10 — 10) odd™™ | 97+ qq
Multiplet 27 even™™ | ¢q+ qq
Mulitplet 20:
Quantum Numbers | Multiplicity I S
JP =1- 8 3/2 +1
JP =1- 4 1/2 +1
JP =1- 2 0 12
JPC =17~ 3
JPC =1-+ 3 1
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Gluonsin QCD

Quantum chromodynamics (QCD), the field theory of strong interactions for colored
quarks and gluons, is based on the group SU(3) of color. The Lagrangian is

1 . .
£QCD — _ZFC;LW PRy ‘|‘@¢2 ’Y”(Du)z‘jwi

(73) 1

— mg ¢k; wk ® )2 QQCD eV Fa aB
where

FCLV = 8MA3 - 81/AZ + gs fabcA/bJJAg
(74)

7; a a
(Dp)ij = Opdij — 593)\1'3' AM

Here the ¢,’i is the 4-component Dirac spinor for each quark with color index ¢ = {1, 2, 3}
and flavor index k = {1,6}, and Af, is the gluon field with the index a = {1, 8}. g is the
QCD coupling constant, i.e. s = gs/(471') the f.u. IS the usual structure constant of the
SU(3) algebra, and A% is the generator of the corresponding SU(3) transformations, so it
is a 3x3 matrix with a = {1,8} and i, j = {1, 2, 3}; and my, again with k = {1, 6}, is the
current-quark mass introduced in the previous section.

QCD is a gauge field theory with just two parameters gs and 6,
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The Flux-Tube Model

N. Isgur and J. Paton, Phys. Rev. D 31 (1985) 2910;

N. Isgur, R. Kokoski and J. Paton, Phys. Rev. Lett. 54 (1985) 869;

F. E. Close and P. R. Page, Nucl. Phys. B 443 (1995) 233;

T. Barnes, F. E. Close and E. S. Swanson, Phys. Rev. D 52 (1995) 5242,

Let L and S be the orbital angular momentum and the total intrinsic spin of a q¢
system. Let s; and so be the spins of g and g, i.e. s; = s2 = 1/2. Then, one readily

finds

(75) j:E+§ and 5:5’14_"2

and

(76) P = (_)L—I-l7 C — (_)L—i—S7 PC — (_)S—I—l

and the wave function in a state of J, L and S is given by

2L+ 1
|JMLS) = 4/ i Z (s1m1 soma|Sms) (Sms LMy |JM)
Am

my ma

(77) mg m

X /dQ D]I\J;;O (¢,60,0) (2, s1m1 82m2>

where M is the z-component of spin J in a coordinate system given in the rest frame of
qq and 2 = (0, ¢) specifies the direction of the breakup momentum in this rest frame.
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In the flux-tube model pioneered by Isgur and Paton and an excited gluonin qg + g is
described by two transverse polarization states of a string, which may be taken to be
clockwise and anticlockwise about the ¢g axis. Let n(+) [n§; )] be the number of
clockwise (anticlockwise) phonons in the mth mode of string excitation.

Two important quantities are defined from these

- A= Z[ (+) _ )}7 N:;m[ (+)+n§n)]

It is clear from the definition that A is the helicity of the flux tube along the ¢q axis. The
number NV is a new quantity; it will be given the name ‘phonon number'—as it represents
the sum of all the phonons in the problem weighted by the mode number m. The wave
function in the flux-tube model is given by

2L+ 1
|JMLS{n(+) nm)}NA \/ + Z (s1m1 saoma|Sms) (Sms LMy |JM)

mq ma
ms ML

X /dQ D]%j;A(qb,Q,O) 192, s1m1; sama; {n%—),nm )}NA>
(79)
There are a set of five rotational invariants specifying a state in the flux-tube model, i.e.
J, L, S, N and A. Note |A| < L.
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The relevant quantum numbers are
(80) P =no (=)FHAHL O = (2)FFSHAEN D PO = (—)FH N

where 79 = +£1. Remark: if nﬁ;f) = nq(n_), then A = 0 and no = +1. Examples are given
in tabular form. The lowest-order gluonic hybrid mesons are

nfr)zlandng_):O;NzlandAzl

L|S|2%t'L;(qq) | JPC(qq) TP (g7 + g)
1p, 1+-— 1++
1——
1 1 3PJ O++, 1++’ o+ O_+, 1—+’ 92—+
0r—, 1+, 2%~
2 0 1D2 o—+ o+t
o——
2 |1 3D 1——,2=—,37— | 1-F,2=F, 3=+

1t—, 2%, 3%t~
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An example of n,ﬁ,;” = nﬁ,ﬂ for m = 1 is given below:

") =1andn{) =1; N=2and A =0

L | S | 25%L;(qq) | JPC(qq) JPC (g7 + 9)

0| O 1.Sg 0—+ 0T

0|1 351 1—— 1——

1 0 1p1 1+— 1+—

1 1 3PJ 0++’ 1++, o++ 0++’ 1++’ o++

Another case of interest:;

néJr):1andn(_):O;N:2andA:1

L | S| 25t Ly(qq) | JP%(qq) JPC(qq + g)
1P1 1+— 1+—
1—+
1 1 3PJ O—I——i—, 1—|—+, o++ O—i-—l-’ 1—|-+, o++
O~ —,17—,2™—
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