X. 北京谱仪的触发判选系统

1999.11

触发判选系统是一个快速、实时事例选择和控制系统。它的基本任务是对来自探测器的二千多路信号进行处理,提取它各自代表的事例的物理性质的特征, 根据不同物理实验的需要进行组合, 对事例进行快速选择,选出好事例,尽可能压缩本底,把事例率从 10^6 /s 压低到数据获取系统能够接受的程度。

一、触发判选系统的功能

触发判选系统是为了解决在高能实验中,高事例率、高数据率和计算机有限的数据 处理能力之间的矛盾。

(一) 好事例率

- 轻子事例 e⁺e⁻→l⁺l⁻ 0.05/s
- 强子事例 e⁺e⁻→h 0.2/s
- 在 J/Ψ 共振峰处 $e^+e^- \rightarrow J/\Psi \rightarrow x$ 5.1/s

(二) 本底

- ①宇宙线 ~10³/s
- ②丢失电子
- 脱轨电子打在探测器上
- 正常电子和真空中残余气体散射

丢失电子数:一个束团 1.0×10^{11} 个电子,束流寿命 6.5h,环长L1为240m,探测器长 L2 约为 5.4m: $N_{Le}=2\times dN/dt\times L2/L1=3.84\times10^5/s$

③其他本底

- 同步辐射 (打在TOF上: 10⁶/s)
- 加速器和外界的电磁干扰等

结论: 本底 >> 好事例

(三) 电子学和计算机的处理能力

1. DAQ概况

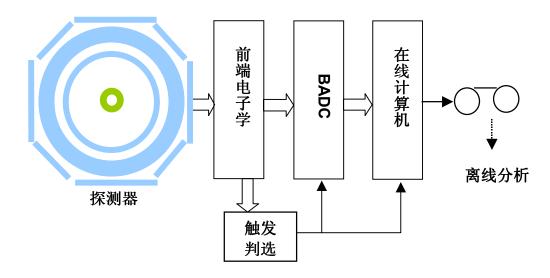


Fig 1. BES数据获取系统的数据流向

按一个 BADC分析 1600 路信号来计算:

 $1600\times6\,\mu\,\mathrm{s}\approx10\mathrm{ms}$

电子学通道: 22000道,数据长度: ~2Kbyte。VCBD 从 BADC 读出数据 3.9 μ s/word, 计算机响应中断 80 μ s, 在线采用 VCBD和MVME162 两级多事例缓冲和高速率数据传送。升级后每个事例的死时间取决于BADC 的转换速度,为10ms/evt。死时间期间,DAQ系统不响应,将损失有效亮度,10¹/s 事例率将造成10%的亮度损失。

二、怎样排除本底---找差别

(1) 从时间上排除

宇宙线---时间上随机分布

好事例———伴随着東团对撞而来,在東团对撞后 30ns 内几乎所有出射的粒子都已到达 TOF 计数器(如Fig2.所示)。因此,触发设置 30ns 时间窗,排除宇宙线本 底。

在时间窗内---可能是好事例:

在时间窗外---定是本底。

用时间窗可以排除

$$\frac{800 - 40}{800} = 95\%$$

的宇宙线。TOF 计数器的宇宙线率(时间窗取 40ns):

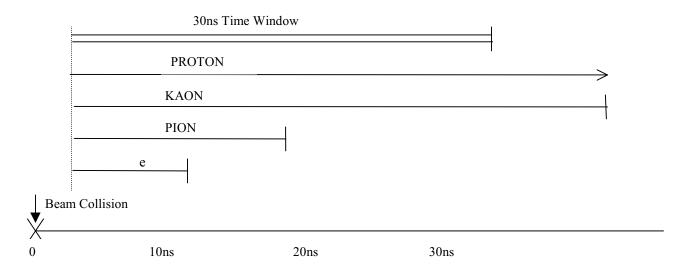


Fig 2. Range of Flight Time of Particles to TOF Barrel

(二) 从空间上排除

宇宙线---空间上均匀分布

好事例----定从对撞区来

正负电子对撞机 e⁺e⁻ 束团的大小约:

2m m×0.2mm×50mm(径向×垂直×纵向长度)

在R- Φ 投影(沿束流方向看),粒子都是从束流管道中心一定半径内发出的。例如:如果要求 MDC 中的径迹通过对撞中心和要求带电粒子通过顶点室,则在 Z 和 R 上都可以排除大部分击中其它探测器上的宇宙线。

$$\sim 10^{3} \text{s}^{-1} \xrightarrow{\text{VC}} \sim 40 \text{s}^{-1} \xrightarrow{40 \text{ns}} 2 \text{s}^{-1}$$

$$0.017 \text{cm}^{-1} \text{s}^{-1} \times 240 \text{cm} \times 280 \text{cm} \qquad 0.017 \text{cm}^{-1} \text{s}^{-1} \times 26 \text{cm} \times 83.8 \text{cm}$$

(三) 从事例的其他物理特性上排除本底

- •MDC寻迹电路使用第2, 4, 6, 8层MDC信号,以第2层单元为基础,与第 4, 6, 8层相关单元形成径迹。在寻迹逻辑中要求径迹大于一定的曲率半径也就是粒子横动量 Pt>100Mev/e 的CUT 条件,可排除大量小角度的散射本底和横动量小的 beam—gas 散射本底(见 Fig 3.)。
- ●MDC系统要求第二、四、六层均有击中,排除了在 Z=±2.7m外丢失的电子本底(见 Fig 4)。
- ●用径向发展的电磁簇射条件排除斜穿过谱仪的宇宙线本底。BSC的一个楔形的各层沉积能量之和大于设置值,作为触发条件RADIAL (见 Fig 5.)。
- $\bullet \mu$ 子的判选要求击中 μ 探测器。因为 μ 子穿透力强,可以穿过磁铁和簇射计数器而击中 μ 探测器。

(四) 高能物理实验对触发判选系统的要求

- 效率高, 不损失好事例;
- •排除比要高,尽可能地排除各种本底;
- 实时快速, 判选时间短:
- 可程控, 灵活可变以适应不同实验条件和要求。

在高本底和较低的数据获取能力状况下,触发判选系统要在 $1\sim4$ 个对撞周期内,从 10^6 的事例中选出好事例,排除掉大部分本底,保证实验数据的质量和工作效率。

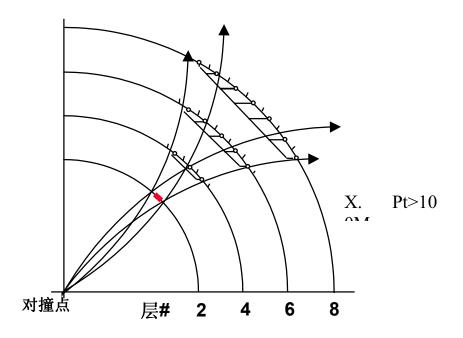


Fig 3. The Track Finding of Using MDC Layer 2,4,6,8

Fig 4. 主漂移室寻迹对丢失电子本底的Z向压低

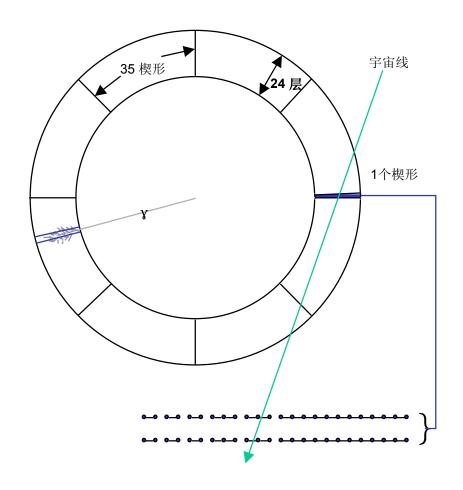


Fig5. 桶部簇射计数器的径向条件示意

三、触发判选系统的工作流程

1、多级触发判选

为实现快速实时判选,减少死时间,系统采用多级触发方案,如下图所示。在第一级用简单的触发条件作快速判选,初步使事例率降到 1~3 Khz。然后通过第二、三级的 2~3个周期做较细致的判选,使事例率降到数据获取系统可以接受的 5~10hz。

2、第一级判选在一个周期内完成

由于第一级的判选必须在时间零点(T0)以后的 420ns之内完成。去掉漂移时间、电缆和主触发电子学的延迟时间,留给触发系统在第一级处理信号的时间仅100ns。

BEPC的 e⁺e 束团每 800ns 完成一次对撞。第一级触发在下一次对撞以前完成,并留出足够时间还原前端电子学,不造成任何死时间。

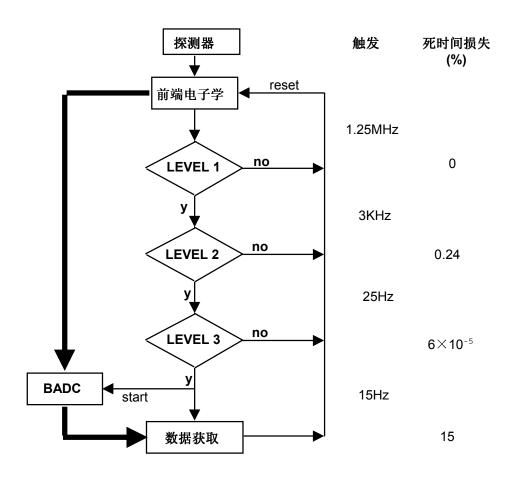


Fig6. BES 触发判选系统的三级判选模式

3、完成一个事例的触发用四个对撞周期

经过第一级触发的事例,在下三个对撞周期内根据其他触发条件,对事例进一步 判选。如果不是好事例,触发系统发出 RESET 信号,还原各子探测器的电子学系统,等 待下一个事例。如果是一个好事例,触发系统对计算机发出 LAM 请求,同时启动各子探 测器电子学的BADC,开始事例的数据获取。在完成取数后,计算机复位触发和电子学系 统,等待下一个事例的触发。

四、北京谱仪的触发判选系统的结构和组成

1. 触发系统是一个由一个分支、七个 CAMAC 机箱、一个 NIM 机箱、近 40 多个品种 130 多块插件组成的 CAMAC 总线系统(少部分 FASTBUS 总线插件)。

它由下列几部分构成:

- 飞行时间计数器(TOF)时间判选系统
- 簇射计数器 (BSC、ESC) 能量判选系统
- 顶点室(VC)径迹判选系统
- μ子鉴别器 (MU) 击中判选系统
- 主漂移室(MDC)寻迹系统
- 主触发控制系统
- 时标产生器系统
- 控制台和触发监测系统
- 2. 各子探测器触发子系统逻辑如 Fig7. 所示。各探测器触发子系统按照各自的判选方法给出的触发条件,集中到主触发可编程组合逻辑,按照触发条件表对各触发条件进行逻辑组合判选,符合触发条件表要求的事例给出LVL1,LVL2信号,由主触发控制逻辑进行状态控制。通过第一和第二级判选,发出 START 和 LAM 请求进行数据获取,不是好事例的还原系统。触发条件表的设置可根据实验需要确定。触发条件表如表1 所示,值班人员可根据实验需要修改触发表。

3. 触发判选系统在每个对撞周期的固定时刻,自动发出定时开门或复位信号给各子探测器电子学,控制谱仪数据获取系统的运行。这些时标由系统的时标产生器生成,并经过现场测量和实验而确定。时标是可编程的。

触发判选系统使用束流管上束流探测器感应信号(Pick-up)作为时间零点(T0),由锁相振荡器产生的与T0锁相的 100Mhz 时钟作为系统时钟。触发判选系统使用 BES 西端的 Pick-up 信号。

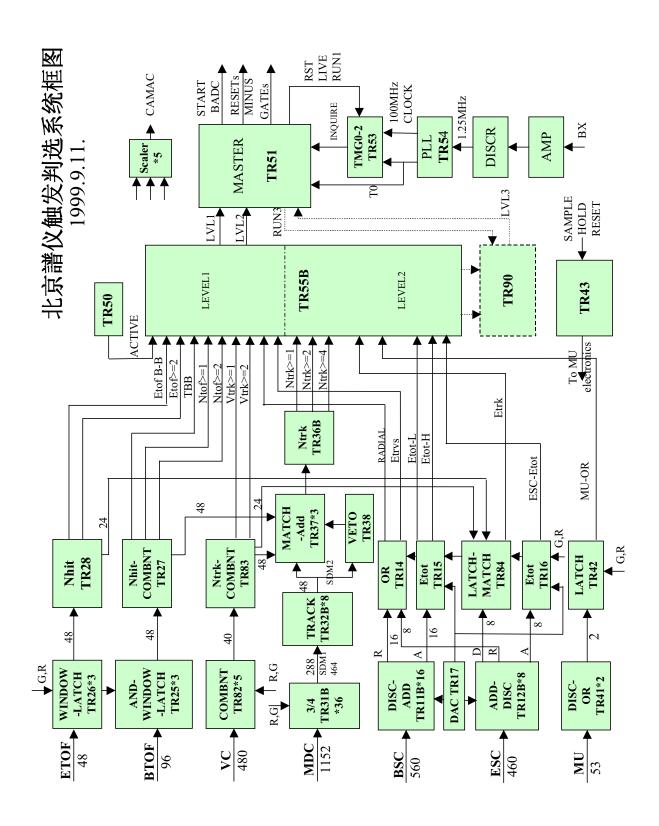


Fig7. 北京谱仪触发判选系统框图

表1 Trigger Condition Table

TYPE	BB	Char	2-MU	Char2	NEU	Cosmic	ESC	BB2
CONDTN								
Active ?	N	Y	N	Y	Y	N	Y	N
TOF B-B	-	-	Y	-	-	-	-	Y
	-	Y	Y	-	-	-	-	-
	-	-	-	Y	-	-	-	Y
	-	-	-	-	Y	-	-	-
	-	Y	Y	-	-	Y	Y	-
	Y	-	-	-	-	-	-	-
	-	-	-	-	-	-	Y	-
	-	-	-	-	-	-	-	-
Ntof>=2	-	-	-	-	-	-	-	-
Radial								
Nvc>=1								
Etrvs								
END B-B								
Etof>=2								
Nvc >= 2								
Ntrk >= 1	-	Y	-	-	-	-	-	Y
Ntrk >= 2	-	-	-	Y	-	Y	-	-
Ntrk>=4	-	-	-	-	-	-	-	-
MU-OR	-	-	-	-	-	-	-	-
Etrk	-	-	-	-	-	-	-	-
ESC-Etot	-	-	-	-	-	-	Y	-
Etot-1	-	Y	-	-	-	-	-	Y
Etot-h	-	-	-	-	Y	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-

(99' 改进后的触发条件表)

上表中各标志位的意义为:

- 'Y'表示为通过判选此条件必须满足
- 'N'表示为通过判选应不满足此条件
- '一'表示忽略此条件
 - 4. 触发系统运行状况记录和监视
- ① 和事例数据同时记录每个事例的触发条件和事例类型情况,可作成直方图检查触发运行情况。
- ② 每个事例获取时同时采集触发信息,用作检查触发逻辑。
- ③ 定时记录各种信号的计数率。

系统共使用 CAMAC 定标器七块28 路,记录触发条件和事例类型的计数率,用来长期监视触发系统的运行,每分钟读一次。

- 5. 以下是触发系统的和运行有关文件:
- TRGTBL.CLD →触发条件表,加载 TR55B
- TMMK.DAT→时标,加载TMG逻辑
- TR17.DAT→设置SC能量条件阈值,加载TR17插件
- OVRD.DAT →设置M D C 死道'1', 加载 3/4逻辑
- '1或 0'→设置对撞或宇宙线实验模式,加载时钟插件。

五、 触发判选系统的操作和运行

- 1. Begin run 对触发系统初始化
- ●将触发条件表 TRGTBL.COS 或 TRGTBL.CLD Copy 到运行表 TRGTBL.TMP,再翻译成不可读的控制 码加载到主触发的可编程逻辑阵列中。
- ●将 TMMK.COS, TMMK.CLD 时标文件 Copy 到 TMMK.DAT 文件。用程序读出加载到时标插件中。
 - ●读取 BSC 阈值文件 TR17.DAT并加载到总能量阈产 生插件 TR17 中。
- ●将实验模式码:宇宙线实验:'1',对撞实验:'0',写入相应插件,如TR54时钟插件。对撞时,使用与束流拾取信号T0锁相的100MHz时钟,作为BES触发判选的系统时钟。而在宇宙线实验时,则使用系统自振荡的100MHz的时钟和1.25MHz的T0信号。
- 2.Begin run之前对上述几个文件的操作和设置
 - ●在运行前必须检查 TRGTBL.TMP 和 TMMK.DAT,

TR17.DAT等文件,应符合实验要求。

SH-TRG 命令 (观看上述文件)

●修改触发条件表和阈值必须经运行负责人同意,在RUN.TRG 目录下用 EDIT 修改 TRGTBL.COS 或 TRGTBL.CLD,TRGTBL.DS 和 TR17.DAT 文件,数据格式与原来的要一样,否则要出错误。时标文件TMMK在[TRG]帐号下,由触发组修改。

●用 **SET-TRG** 命令将上述修改过的文件转换为运行文件,Begin RUN 时才能按新的文件运行。

注意!!

所有有关文件均反映了运行历史, 不得随意删除。

- 3. 触发判选系统运行时需要监测和检查,以保证数据获取的质量和数量
 - 1) 触发系统的有关直方图:检查系统运行情况
- ◆ 触发各子系统的工作情况
 - 主触发可编程逻辑组合的输入输出,检查触发条件表执行情况
 - 飞行时间 TOF '击中'分布图
 - 主漂移室 MDC 寻迹分布图
 - 顶点室 VC 径迹分布图
 - 1/8 桶部和端盖簇射计数器'击中'分布
 - 端部径迹分布图
- ◆ 定标器计数直方图,显示各级触发和触发条件的计数

Fig8. 是主触发可编程逻辑组合的输入输出直方图,逻辑组合的输入是各触发条件,它的输出是通过判选的事例类型。前一组为第一级的触发条件和通过第一级的事例类型,第二组是第二级的触发条件和通过第二级的事例类型。该直方图用来与触发条件表对照来检查触发表执行情况。

以下用 MDC 径迹分布图为例解释分布图的意义。Fig9. 是MDC 径迹分布图。在事例读取时,读取MDC中寻到径迹的第二层单元的位置。它的直方图表示寻到径迹的 Φ 向分布,它应是均匀的分布。从直方图上看,在MDC的 90⁰ 和 270⁰ 位置径迹数较多,这是宇宙线的影响。其它的分布图也是同样道理。

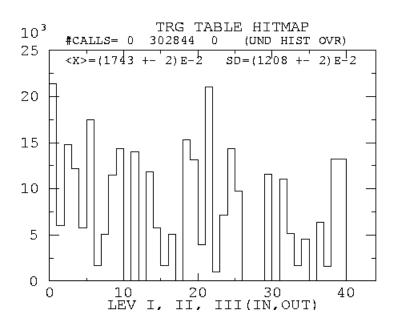


Fig8. 主触发可编程逻辑组合的输入输出直方图

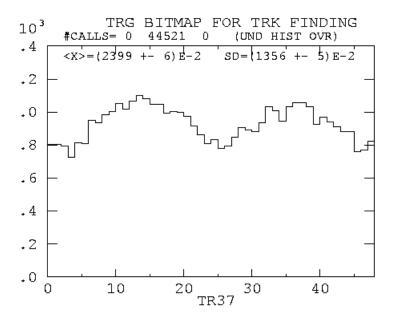


Fig9. MDC径迹分布图

- 2) 控制台上定标器可以直观地反映出当时运行的状态,应随时观测记录,与预期值比较。如发现异常,通知触发组检查,保证数据质量。特别要注意的是活时间和死时间的值,它们的和应为~12480/10s(1000分頻),死时间应占总数的10%左右,通过LVL1和 N_{TOF}>=1的计数为 3K 左右。
 - 3) 单事例显示中的触发信息

位置: 在单事例图的右上角(见Fig10.)

4) 主触发控制板 TR51红色和绿色指示灯交替闪亮,表示有事例通过触发, DAQ系统正常运行。

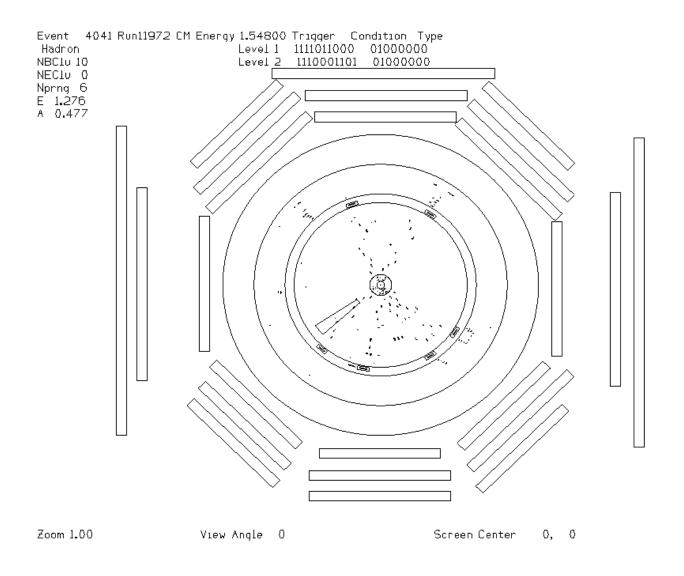


Fig10. 单事例显示