Charmed Baryons

Hai-Yang Cheng (鄭海揚)

Academia Sinica, Taipei

BESIII yellow book meeting Beijing, November 5, 2006

Contents

I. Introduction	2
II. Production of charmed baryons at BESIII	3
III. Spectroscopy	3
IV. Strong decaysA. Strong decays of s-wave charmed baryonsB. Strong decays of p-wave charmed baryons	7 7 9
V. Lifetimes	11
VI. Hadronic weak decays A. Quark-diagram scheme B. Dynamical model calculation C. Discussions 1. Decay asymmetry 2. Λ_c^+ decays 3. Ξ_c^+ decays 4. Ξ_c^0 decays 5. Ω_c^0 decays D. Charm-flavor-conserving weak decays	17 18 19 22 22 24 25 26 26
VII. Semileptonic decays	27
VIII. Electromagnetic and Weak Radiative decays A. Electromagnetic decays B. Weak radiative decays	28 28 31
References	32

Charmed baryon production at BESIII

If \boxtimes s > 4.6 GeV, \Rightarrow charmed baryon physics

In order to estimate the number of charmed baryon events produced at BESIII, one needs to know luminosity, $\sigma(e^+e^-\to c\underline{c})$, fragmentation function of $c\to hadrons$

Chao-His Chang, Jian-Ping Ma, Cong-Feng Qiao, Xing-Gang Wu hep-ph/0610205

"Hadronic production of the doubly charmed baryon Ξ_{cc} with intrinsic charm"

Spectroscopy

In SU(3) representation, diquark = $3 \times 3 = 3 + 6$

3: $\Lambda_c^+, \Xi_c^+, \Xi_c^0$,

- all decay weakly
- 6: $\Omega_c^{~0}, \Xi'^+_{~c}, \Xi'^0_{~c}, \Sigma_c^{~++,+,0}$ only $\Omega_c^{~0}$ decays weakly
 - Ω_{c}^{*0} Ξ^{*+}_{c} , Ξ^{*0}_{c} , $\Sigma_{c}^{*++,+,0}$

(a)

Many new resonances observed:

Ground state: Ω_c^* with mass=2768.3±3.0 MeV

Orbitally excited p-wave states: L=1

e.g.
$$\Lambda_c(2593)$$
, $\Lambda_c(2625) = \Lambda_{c1}(1/2^-,3/2^-)$

Positive parity excitations: L=2,1,0

e.g.
$$J^{P}[\Lambda_{c}(2880)]=5/2^{+}$$

Orbitally excited charmed baryon states

$$L_k+L_K=L$$
 (not $L_k+L_K=L$)

Two possible p-wave states:

1.
$$L_k=1$$
, $L_K=0$; antisymmetric under $q_1 \leftrightarrow q_2$

2.
$$L_k=0$$
, $L_K=1$; symmetric under $q_1 \leftrightarrow q_2$

$$J_1=S_1+L$$
, $J=S_c+J_1$

State	SU(3)	S_{ℓ}	L_{ℓ}	$J_\ell^{P_\ell}$	State	SU(3)	S_{ℓ}	$L_{m{\ell}}$	$J_\ell^{P_\ell}$
$\Lambda_{c1}(rac{1}{2},rac{3}{2})$	3	0	1	1-	$\Xi_{c1}(rac{1}{2},rac{3}{2})$	3	0	1	1-
$\Sigma_{c0}(rac{1}{2})$	6	1	1	0-	$\Xi_{c0}'(\frac{1}{2})$	6	1	1	0-
$\Sigma_{c1}(rac{1}{2},rac{3}{2})$	6	1	1	1-	$\Xi_{c1}'(\frac{1}{2},\frac{3}{2})$	6	1	1	1-
$\Sigma_{c2}(rac{3}{2},rac{5}{2})$	6	1	1	2-	$\Xi_{c2}'(\frac{3}{2},\frac{5}{2})$	6	1	1	2-
$ ilde{\Sigma}_{c1}(rac{1}{2},rac{3}{2})$	6	0	1	1-	$\tilde{\Xi}_{c1}^{\prime}(rac{1}{2},rac{3}{2})$	6	0	1	1-
$\tilde{\Lambda}_{c0}(rac{1}{2})$	3	1	1	0-	$ ilde{\Xi}_{c0}(rac{1}{2})$	3	1	1	0-
$ ilde{\Lambda}_{c1}(rac{1}{2},rac{3}{2})$	3	1	1	1-	$ ilde{\Xi}_{c1}(rac{1}{2},rac{3}{2})$	3	1	1	1-
$ ilde{\Lambda}_{c2}(frac{3}{2}, frac{5}{2})$	3	1	1	2-	$ ilde{\Xi}_{c2}(frac{3}{2}, frac{5}{2})$	3	1	1	2-

symmetric

antisymmetric

Positive parity excitations:

1.
$$L_k=2$$
, $L_K=0$; $L_k=0$, $L_K=2$ symmetric under $q_1\leftrightarrow q_2$; $L=2$

2.
$$L_k=L_K=1$$
 antisymmetric under $q_1\leftrightarrow q_2$; L=2,1,0

State	$\mathrm{SU}(3)_F$	S_{ℓ}	L_{ℓ}	$J_\ell^{P_\ell}$	State	$\mathrm{SU}(3)_F$	S_{ℓ}	L_ℓ	$J_\ell^{P_\ell}$
$\Lambda_{c2}(rac{3}{2}^+,rac{5}{2}^+) \ ilde{\Lambda}_{c1}(rac{1}{2}^+,rac{3}{2}^+)$	3	0	2	2+	$\Sigma_{c1}(\frac{1}{2}^+,\frac{3}{2}^+) \ \Sigma_{c2}(\frac{3}{2}^+,\frac{5}{2}^+) \ \Sigma_{c3}(\frac{5}{2}^+,\frac{7}{2}^+) \ \tilde{\Sigma}_{c0}(\frac{1}{2}^+)$	6	1	2	1+
$\tilde{\Lambda}_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \ \tilde{\Lambda}_{c0}(\frac{1}{2}^+, \frac{3}{2}^+) \ \tilde{\Lambda}_{c1}'(\frac{1}{2}^+, \frac{3}{2}^+)$	3	1	0	1+	$\Sigma_{c2}(\frac{3}{2}^+,\frac{5}{2}^+)$	6	1	2	2+
$\tilde{\Lambda}'_{\alpha}(\frac{1}{2}^+)$	3	1	1	0+	$\Sigma_{c3}(rac{ ilde{5}}{2}^+,rac{ ilde{7}}{2}^+)$	6	1	2	3^+
$ ilde{\Lambda}'_{c1}(rac{1}{2}^+,rac{3}{2}^+)$	3	1	1	1+	—cu(') /	6	0	0	0+
$\tilde{\Lambda}'_{c2}(\frac{3}{2}^+,\frac{5}{2}^+)$	3	1	1	2^+	$ ilde{\Sigma}_{c1}(rac{1}{2}^+,rac{3}{2}^+) \ ilde{\Sigma}_{c2}(rac{3}{2}^+,rac{5}{2}^+)$	6	0	1	1+
$\tilde{\Lambda}_{c1}''(\frac{1}{2}^+,\frac{3}{2}^+)$	3	1	2	1+	$ \tilde{\Sigma}_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \\ \tilde{\Sigma}_{c2}(\frac{3}{2}^+, \frac{5}{2}^+) $	6	0	2	2+
$\tilde{\Lambda}_{c2}''(\frac{3}{2}^+,\frac{5}{2}^+)$	3	1	2	2^+					
$\tilde{\Lambda}'_{c1}(\frac{1}{2}^+, \frac{3}{2}^+)$ $\tilde{\Lambda}'_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$ $\tilde{\Lambda}''_{c1}(\frac{1}{2}^+, \frac{3}{2}^+)$ $\tilde{\Lambda}''_{c1}(\frac{3}{2}^+, \frac{5}{2}^+)$ $\tilde{\Lambda}''_{c3}(\frac{5}{2}^+, \frac{7}{2}^+)$ $\Xi_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$ $\Xi_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$	3	1	2	3^+					
$\Xi_{c2}(\frac{3}{2}^+, \frac{5}{2}^+) \\ \tilde{\Xi}_{c1}(\frac{1}{2}^+, \frac{3}{2}^+)$	3	0	2	2+	$\Xi'_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \\ \Xi'_{c2}(\frac{3}{2}^+, \frac{5}{2}^+) \\ \Xi'_{c3}(\frac{5}{2}^+, \frac{7}{2}^+) \\ \widetilde{\Xi}'_{c3}(\frac{1}{2}^+)$	6	1	2	1+
$ \Xi_{c1}(\frac{1}{2}^{-},\frac{3}{2}^{-}) $	3	1	0	1+	$\Xi_{c2}^{\prime}(\frac{3}{2}^{+},\frac{5}{2}^{+})$	6	1	2	2+
$\tilde{\Xi}_{c0}^{\prime\prime}(\frac{1}{2}^+)$	3	1	1	0_{+}	$\Xi'_{c3}(\frac{5}{2}^+,\frac{7}{2}^+)$	6	1	2	3^+
$\tilde{\Xi}_{c1}''(\frac{1}{2}^+,\frac{3}{2}^+)$	3	1	1	1+	$\tilde{\Xi}'_{c0}(\frac{1}{2}^+)$ $\tilde{\Xi}'_{c1}(\frac{1}{2}^+3^+)$	6	0	0	0+
$\tilde{\Xi}_{c2}''(\frac{3}{2}^+,\frac{5}{2}^+)$	3	1	1	2^+	$\tilde{\Xi}'_{c1}(\frac{1}{2}^+,\frac{3}{2}^+)$	6	0	1	1+
$\tilde{\Xi}_{c2}^{"'}(\frac{3}{2}^+, \frac{5}{2}^+) \\ \tilde{\Xi}_{c1}^{"'}(\frac{1}{2}^+, \frac{3}{2}^+)$	3	1	2	1+	$\tilde{\Xi}'_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \\ \tilde{\Xi}'_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$	6	0	2	2+
$\tilde{\Xi}_{c2}^{""}(\frac{\bar{3}}{2}^+,\frac{\bar{5}}{2}^+)$	3	1	2	2^+					
$\tilde{\Xi}_{c2}^{""}(\frac{3}{2}^+,\frac{5}{2}^+) \\ \tilde{\Xi}_{c3}^{""}(\frac{5}{2}^+,\frac{7}{2}^+)$	3	1	2	3+					

	State	J^P	S_ℓ	L_{ℓ}	$J_\ell^{P_\ell}$	Mass	Width	Decay modes
	Λ_c^+	1+ 2	0	0	0+	2286.46 ± 0.14		weak
	$\Lambda_c(2593)^+$	1- 2- 3- 2	0	1	1-	2595.4 ± 0.6	$3.6^{+2.0}_{-1.3}$	$\Sigma_c\pi,\Lambda_c\pi\pi$
	$\Lambda_c(2625)^+$	3 2	0	1	1-	2628.1 ± 0.6	< 1.9	$\Lambda_c\pi\pi, \Sigma_c\pi$
¹/₂ ⁺ →	$\Lambda_c(2765)^+$??	?	?	?	2766.6 ± 2.4	50	$\Sigma_c\pi, \Lambda_c\pi\pi$
-	$\Lambda_c(2880)^+$	<u>5</u> +	?	?	?	2881.5 ± 0.3	5.5 ± 0.6	$\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p$
3/2+,5/2-	$\Lambda_c(2940)^+$??	?	?	?	2938.8 ± 1.1	13.0 ± 5.0	$\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p$
	$\Sigma_c(2455)^{++}$	1+ 2	1	0	1+	2454.02 ± 0.18	2.23 ± 0.30	$\Lambda_c\pi$
	$\Sigma_c(2455)^+$	1+ 2	1	0	1+	2452.9 ± 0.4	< 4.6	$\Lambda_c\pi$
	$\Sigma_c(2455)^0$	1+ 2	1	0	1+	2453.76 ± 0.18	2.2 ± 0.4	$\Lambda_c\pi$
	$\Sigma_c(2520)^{++}$	3+ 2	1	0	1+	2518.4 ± 0.6	14.9 ± 1.9	$\Lambda_c\pi$
	$\Sigma_c(2520)^+$	3+ 2	1	0	1+	2517.5 ± 2.3	< 17	$\Lambda_c\pi$
	$\Sigma_{\rm c}(2520)^0$	3+ 2	1	0	1+	2518.0 ± 0.5	16.1 ± 2.1	$\Lambda_c\pi$
3/2-	$\Sigma_c(2800)^{++}$	$\frac{3}{2}^{-}$?	1	1	2-	2801^{+4}_{-6}	75^{+22}_{-17}	$\Lambda_c \pi, \Sigma_c^{(*)} \pi, \Lambda_c \pi \pi$
	$\Sigma_c(2800)^+$	3 ⁻ ?	1	1	2-	2792^{+14}_{-5}	62^{+60}_{-40}	$\Lambda_c\pi, \Sigma_c^{(*)}\pi, \Lambda_c\pi\pi$
	$\Sigma_{c}(2800)^{0}$	$\frac{3}{2}^{-}$?	1	1	2-	2802^{+4}_{-7}	61^{+28}_{-18}	$\Lambda_c\pi, \Sigma_c^{(*)}\pi, \Lambda_c\pi\pi$
	Ξ_c^+	1+ 2	0	0	0+	2467.9 ± 0.4		weak
Only	Ξ_c^0	1+ 5	0	0	0+	2471.0 ± 0.4		weak
parity of	$\Xi_c^{\prime+}$	1+ 2 1+ 2 3+ 2	1	0	1+	2575.7 ± 3.1		$\Xi_c\gamma$
Λ _c &	Ξ'0	1+ 2	1	0	1+	2578.0 ± 2.9		$\Xi_c \gamma$
Λ_c° (2880)	$\Xi_c(2645)^+$	3+ 2	1	0	1+	2646.6 ± 1.4	< 3.1	$\Xi_c\pi$
has been	$\Xi_c(2645)^0$	$\frac{3}{2}$	1	0	1+	2646.1 ± 1.2	< 5.5	$\Xi_c\pi$
measured	$\Xi_c(2790)^+$	1-	0	1	1-	2789.2 ± 3.2	< 15	$\Xi_c'\pi$
	$\Xi_c(2790)^0$	1 - 2 - 3 - 2 - 3 - 2 - 2 -	0	1	1-	2791.9 ± 3.3	< 12	$\Xi_c'\pi$
	$\Xi_c(2815)^+$	<u>3</u> -	0	1	1-	2816.5 ± 1.2	< 3.5	$\Xi_c^*\pi,\Xi_c\pi\pi,\Xi_c'\pi$
	$\Xi_c(2815)^0$	3- 2	0	1	1-	2818.2 ± 2.1	< 6.5	$\Xi_c^*\pi,\Xi_c\pi\pi,\Xi_c'\pi$
1/2+	$\Xi_c(2980)^+$??	?	?	?	2971.1 ± 1.7	25.2 ± 3.0	see Table VII
1/2+	$\Xi_c(2980)^0$??	?	?	?	2977.1 ± 9.5	43.5	see Table VII
5/2+	$\Xi_c(3077)^+$??	?	?	?	3076.5 ± 0.6	6.2 ± 1.1	see Table VII
5/2+	$\Xi_c(3077)^0$??	?	?	?	3082.8 ± 2.3	5.2 ± 3.6	see Table VII
	Ω_c^c	1+ 2	1	0	1+	2697.5 ± 2.6		weak
-	$\Omega_c(2768)^0$	3+ 2	1	0	1+	2768.3 ± 3.0		$\Omega_c \gamma$

An ideal place for testing heavy quark symmetry and chiral symmetry: heavy hadron chiral perturbation theory (HHChPT)

Strong decays of s-wave charmed baryons

Decay	Expt.	This work	Tawfiq	Ivanov	Huang	Albertus
	[7]	ннсьрт	et al. [27]	et al. [28]	et al. [29]	et al. [30]
$\Sigma_c^{++} o \Lambda_c^+ \pi^+$	2.23 ± 0.30	input	1.51 ± 0.17	2.85 ± 0.19	2.5	2.41 ± 0.07
$\Sigma_c^+ o \Lambda_c^+ \pi^0$	< 4.6	2.6 ± 0.4	1.56 ± 0.17	3.63 ± 0.27	3.2	2.79 ± 0.08
$\Sigma_c^0 o \Lambda_c^+ \pi^-$	2.2 ± 0.4	2.2 ± 0.3	1.44 ± 0.16	2.65 ± 0.19	2.4	2.37 ± 0.07
$\Sigma_c(2520)^{++} ightarrow \Lambda_c^+ \pi^+$	14.9 ± 1.9	16.7 ± 2.3	11.77 ± 1.27	21.99 ± 0.87	8.2	17.52 ± 0.75
$\Sigma_c(2520)^+ o \Lambda_c^+ \pi^0$	< 17	17.4 ± 2.3			8.6	17.31 ± 0.74
$\Sigma_c(2520)^0 ightarrow \Lambda_c^+\pi^-$	16.1 ± 2.1	16.6 ± 2.2	11.37 ± 1.22	21.21 ± 0.81	8.2	16.90 ± 0.72
$\Xi_c(2645)^+ \to \Xi_c^{0,+} \pi^{+,0}$	< 3.1	2.8 ± 0.4	1.76 ± 0.14	3.04 ± 0.37		3.18 ± 0.10
$\Xi_c(2645)^0 \to \Xi_c^{+,0} \pi^{-,0}$	< 5.5	2.9 ± 0.4	1.83 ± 0.06	3.12 ± 0.33		3.03 ± 0.10

in units of MeV

Strong decays of p-wave charmed baryons

	Decay	Expt.	This work	Tawfiq	Ivanov	Huang	Zhu
		[7]	ннсьрт	et al. [27]	et al. [28]	et al. [29]	[34]
h ₂		$2.63^{+1.56}_{-1.09}$	input			2.5	
		$0.65^{+0.41}_{-0.31}$	$0.62^{+0.37}_{-0.26}$	1.47 ± 0.57	0.79 ± 0.09	$0.55^{+1.3}_{-0.55}$	0.64
	$\Lambda_c(2593)^+ o \Sigma_c^0 \pi^+$	$0.67^{+0.41}_{-0.31}$	$0.67^{+0.40}_{-0.28}$	1.78 ± 0.70	0.83 ± 0.09	0.89 ± 0.86	0.86
	$\Lambda_c(2593)^+ o \Sigma_c^+ \pi^0$		$1.34^{+0.79}_{-0.55}$	1.18 ± 0.46	0.98 ± 0.12	1.7 ± 0.49	1.2
	$\Lambda_c(2625)^+ ightarrow \Sigma_c^{++} \pi^-$	< 0.10	≲ 0.028	0.44 ± 0.23	0.076 ± 0.009	0.013	0.011
	$\Lambda_c(2625)^+ o \Sigma_c^0 \pi^+$	< 0.09	≤ 0.028	0.47 ± 0.25	0.080 ± 0.009	0.013	0.011
	$\Lambda_c(2625)^+ o \Sigma_c^+ \pi^0$		≲ 0.040	0.42 ± 0.22	0.095 ± 0.012	0.013	0.011
	$\Lambda_c(2625)^+ o \Lambda_c^+ \pi\pi$	< 1.9	≲ 0.21			0.11	
	$\Sigma_c(2800)^{++} \to \Lambda_c \pi, \Sigma_c^{(*)} \pi$		input				
h ₁₀ ←	$\Sigma_c(2800)^+ o \Lambda_c \pi, \Sigma_c^{(*)} \pi$	62^{+60}_{-40}	input				
	$\Sigma_{\rm c}(2800)^0 \to \Lambda_{\rm c}\pi, \Sigma_{\rm c}^{(*)}\pi$	61^{+28}_{-18}	input				
	$\Xi_c(2790)^+ o \Xi_c^{\prime 0,+} \pi^{+,0}$	< 15	$7.7^{+4.5}_{-3.2}$				
	$\Xi_c(2790)^0 \to \Xi_c^{\prime +,0} \pi^{-,0}$	< 12	$8.1^{+4.8}_{-3.4}$				
	$\Xi_c(2815)^+ \to \Xi_c^{*+,0} \pi^{0,+}$	< 3.5	$3.2^{+1.9}_{-1.3}$	2.35 ± 0.93	0.70 ± 0.04		
	$\Xi_c(2815)^0 \to \Xi_c^{*+,0}\pi^{-,0}$	< 6.5	$3.5^{+2.0}_{-1.4}$				

in units of MeV

isospin violation:
$$\Sigma_c^+\pi^0\sim 2~\Sigma_c^{~0}\pi^+$$
, $\Lambda_c\pi^0\pi^0\sim \Lambda_c\pi^+\pi^-$

as π^0 is lighter than π^{\pm}

Lifetimes

10⁻¹⁵s

[I] +	442±26
Λ_{c}^{+}	200±6
	112 ⁺¹³ ₋₁₀
$\Omega_{ m c}^{\;0}$	69±12

D+	1040±7
D _s +	500±7
D ⁰	410.1±1.5

heavy quark expansion:

$$\Gamma(B_c \to f) = \frac{G_F^2 m_c^5}{192\pi^3} V_{CKM} \left(A_0 + \frac{A_2}{m_c^2} + \frac{A_3}{m_c^3} + \dots \right)$$

Pauli interference & W-exchange are $1/m_c^3$ corrections, enhanced by p.s. enhancement factor of $16\pi^2$

c decay

destructive P.I.

W-exchange

constructive P.I.

	Dec	Ann	Int(-)	Int(+)	Semi- inclusive	$\tau(10^{-13}s)$	Expt
Ξc+	1	s ²	1	c ²	small P.I.	3.68	4.42±0.26
Λ_{c}^{+}	1	c ²	1	s ²		2.64	2.00±0.06
Ξ _c 0	1	1	1	1	small P.I.	1.93	1.12 ^{+0.13} _{-0.10}
$\Omega_{ m c}^{\ 0}$	1	6s ²		10/3c ²	large P.I.	1.71	0.69±0.12

 $s=sin\theta_{C}$, $c=cos\theta_{C}$

- Lifetime hierarchy $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$ is qualitatively understandable, but not quantitatively.
- It has been claimed that lifetimes can be accommodated (except Ξ_c^+) provided that hybrid renormalization is employed and replacement of f_D by F_D is made (Shifman, Blok, Guberina, Bigi.....)
- It is difficult to explain $\tau(\Xi_c^+)/\tau(\Lambda_c^+)=2.21\pm0.15$
- 1/m_c expansion is not well convergent and sensible

Hadronic weak decays

Complications:

- **♦** Baryons are made of three quarks
- Factorization approximation generally doesn't work
 W-exchange is not subject to helicity & color suppression
- ◆ Current algebra is no longer applicable as the outgoing meson is far from being "soft". Also this soft-meson technique is not applicable to vector meson production

Hadronic weak decays

■ Diagrammatic scheme

- Two distinct internal W emission diagrams, three different W exchange diagrams
- Need information of decay asymmetry to extract s-wave and p-wave amplitudes separately

$$M(B_i \to B_f + P) = i\overline{u}_f (A + B\gamma_5)u_i$$

■ Dynamical model calculation

pole model:

Consider low-lying pole contributions:

s-wave is governed by ½ resonances

p-wave is dominated by ½ ground-state baryons

Relativistic QM: Korner, Kramer, Ivanov,...

BRs of Cabibbo-allowed decays

Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer [56]	Kamal [60]	Tseng [59]	et al. [74]	[73]	Verma [72]	[3]
$\Lambda_c^+ o \Lambda \pi^+$	input	1.62	0.88	0.79	0.54	1.12	$0.90 \pm\ 0.28$
$\Lambda_c^+ o \Sigma^0 \pi^+$	0.32	0.34	0.72	0.88	0.41	1.34	$0.99 {\pm}~0.32$
$\Lambda_c^+ o \Sigma^+ \pi^0$	0.32	0.34	0.72	0.88	0.41	1.34	$1.00 \pm\ 0.34$
$\Lambda_c^+ o \Sigma^+ \eta$	0.16			0.11	0.94	0.57	$0.48 \pm\ 0.17$
$\Lambda_c^+ o \Sigma^+ \eta'$	1.28			0.12	0.12	0.10	
$\Lambda_c^+ o par K^0$	input	1.20	1.26	2.06	1.79	1.64	$2.3 \pm\ 0.6$
$\Lambda_c^+ o \Xi^0 K^+$	0.26	0.10		0.31	0.36	0.13	$0.39 \pm\ 0.14$
$\Xi_c^+ o \Sigma^+ \bar{K}^0$	6.45	0.44	0.84	3.08	1.56	0.04	
$\Xi_c^+ o \Xi^0 \pi^+$	3.54	3.36	3.93	4.40	1.59	0.53	0.55 ± 0.16^a
$\Xi_c^0 o \Lambda \bar K^0$	0.12	0.37	0.27	0.42	0.35	0.54	seen
$\Xi_c^0 o \Sigma^0 \bar K^0$	1.18	0.11	0.13	0.20	0.11	0.07	
$\Xi_c^0 o \Sigma^+ K^-$	0.12	0.12		0.27	0.36	0.12	
$\Xi_c^0 o \Xi^0 \pi^0$	0.03	0.56	0.28	0.04	0.69	0.87	
$\Xi_c^0 o \Xi^0 \eta$	0.24			0.28	0.01	0.22	
$\Xi_c^0 o \Xi^0 \eta'$	0.85			0.31	0.09	0.06	
$\Xi_c^0 o \Xi^- \pi^+$	1.04	1.74	1.25	1.22	0.61	2.46	seen
$\Omega_c^0 o \Xi^0 ar K^0$	1.21		0.09	0.02			

Decay asymmetry α for Cabibbo-allowed decays

Longitudinal pol. of daughter baryon from unpol. parent baryon information on the relative sign between s- and p-waves

Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer [56]	Kamal [60]	Tseng [59]	et al. [74]	[73]	Verma [72]	[3]
$\Lambda_c^+ o \Lambda \pi^+$	-0.70	-0.67	-0.95	-0.95	-0.99	-0.99	-0.91 ± 0.15
$\Lambda_c^+ o \Sigma^0 \pi^+$	0.70	0.92	0.78	0.43	0.39	-0.31	
$\Lambda_c^+ o \Sigma^+ \pi^0$	0.71	0.92	0.78	0.43	0.39	-0.31	$-0.45\pm~0.32$
$\Lambda_c^+ o \Sigma^+ \eta$	0.33			0.55	0	-0.91	
$\Lambda_c^+ o \Sigma^+ \eta'$	-0.45			-0.05	-0.91	0.78	
$\Lambda_c^+ o par K^0$	-1.0	0.51	-0.49	-0.97	-0.66	-0.99	
$\Lambda_c^+ o \Xi^0 K^+$	0	0		0	0	0	
$\Xi_c^+ o \Sigma^+ \bar{K}^0$	-1.0	0.24	-0.09	-0.99	1.00	0.54	
$\Xi_c^+ o \Xi^0 \pi^+$	-0.78	-0.81	-0.77	-1.0	1.00	-0.27	
$\Xi_c^0 o \Lambda \bar K^0$	-0.76	1.0	-0.73	-0.75	-0.29	-0.79	
$\Xi_c^0 o \Sigma^0 \bar K^0$	-0.96	-0.99	-0.59	-0.55	-0.50	0.48	
$\Xi_c^0 o \Sigma^+ K^-$	0	0		0	0	0	
$\Xi_c^0 o \Xi^0 \pi^0$	0.92	0.92	-0.54	0.94	0.21	-0.80	
$\Xi_c^0 o \Xi^0 \eta$	-0.92			-1.0	-0.04	0.21	
$\Xi_c^0 o \Xi^0 \eta'$	-0.38			-0.32	-1.00	0.80	
$\Xi_c^0 o \Xi^- \pi^+$	-0.38	-0.38	-0.99	-0.84	-0.79	-0.97	-0.6 ± 0.4
$\Omega_c^0 o \Xi^0 ar K^0$	0.51		-0.93	-0.81			

??

Decay modes that proceed through factorizable diagrams

$$\Lambda_c^+ \rightarrow p\phi$$

$$|a_2| = 0.60 \pm 0.10$$
, close to c_2

1/N_c is also applicable to charmed baryon sector

$$\Omega_{\rm c}^{0} \rightarrow \Omega^{-} \pi^{+}$$

$$\Omega_{c}^{0} \rightarrow \Omega^{-}\pi^{+}$$

$$\Omega_{c}^{0} \rightarrow \Xi^{*0}\underline{\mathbf{K}}^{0}$$

$$\mathbf{a}_2$$

Charm-flavor-conserving weak decays:

Light quarks undergo weak transitions, while c quark behaves as a "spectator" e.g. $\Xi_c \rightarrow \Lambda_c \pi$, $\Omega_c \rightarrow \Xi'_c \pi$

$$Br(\Xi_c^0 \to \Lambda_c^+ \pi^-) = 2.9 \times 10^{-4}$$

$$Br(\Xi_c^+ \to \Lambda_c^+ \pi^0) = 6.7 \times 10^{-4}$$

Br(
$$\Omega_c^0 \to \Xi'_c \pi^-$$
)= 4.5× 10⁻⁶

should be readily accessible soon

Semileptonic decays

Semileptonic rate depends on $B_c \rightarrow B$ form factors

Six form factors are reduced to two in $m_0 \rightarrow \infty$ limit

	→ NRQW		\leftarrow	RQM	LFQM	QSR	QSR	
Process	Pérez-Marcial	Singleton	Cheng,	Ivanov	Luo	Marques de Carvalho	Huang,	Expt.
	et al. [85]	[86]	Tseng [81]	et al. [87]	[88]	et al. [89]	Wang [90]	[3]
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	11.2 (7.7)	9.8	7.1	7.22	7.0	13.2 ± 1.8	10.9 ± 3.0	10.5 ± 3.0
				-0.812		-1	-0.88 ± 0.03	-0.86 ± 0.04
$\Xi_c^0 o \Xi^- e^+ \nu_e$	18.1 (12.5)	8.5	7.4	8.16	9.7			seen
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	18.4 (12.7)	8.5	7.4	8.16	9.7			seen

in units of 10¹⁰s⁻¹

Electromagnetic decays

$$B_6 \to B_{\overline{3}} + \gamma: \quad \Sigma_c \to \Lambda_c + \gamma, \; \Xi_c^{'} \to \Xi_c + \gamma$$

$$B_6^* \to B_{\overline{3}} + \gamma: \quad \Sigma_c^* \to \Lambda_c + \gamma, \; \Xi_c^{'*} \to \Xi_c + \gamma$$

$$B_6^* \to B_6 + \gamma: \quad \Sigma_c^* \to \Sigma_c + \gamma, \; \Xi_c^{'*} \to \Xi_c^{'} + \gamma, \; \Omega_c^* \to \Omega_c + \gamma$$

suitable framework: HHChPT+ QM

Decay	HHChPT	Ivanov	Bañuls	Tawfiq	Experiment
	+QM [23, 92]	et al. [87]	et al. [93]	et al. [94]	[3]
$\Sigma_c^+ o \Lambda_c^+ \gamma$	88	$\textbf{60.7} \pm \textbf{1.5}$		87	
$\Sigma_c^{**+} \to \Sigma_c^{++} \gamma$	1.4			3.04	
$\Sigma_c^{*+} \to \Sigma_c^+ \gamma$	0.002	0.14 ± 0.004		0.19	
$\Sigma_c^{*+} o \Lambda_c^+ \gamma$	147	151 ± 4			
$\Sigma_c^{*0} o \Lambda_c^0 \gamma$	1.2			0.76	
$\Xi_c^{\prime+} o \Xi_c^+ \gamma$	16	12.7 ± 1.5			seen
$\Xi_c^{\prime 0} ightarrow \Xi_c^0 \gamma$	0.3	$\boldsymbol{0.17 \pm 0.02}$	1.2 ± 0.7		seen
$\Xi_c^{\prime*+} o \Xi_c^+ \gamma$	54	54 ± 3			
$\Xi_c^{\prime*0} o \Xi_c^0 \gamma$	1.1	$\boldsymbol{0.68 \pm 0.04}$	5.1 ± 2.7		
$\Omega_c^{*0} \to \Omega_c^0 \gamma$	0.9				seen

in units of keV

Weak radiative decays

Charm-flavor-changing

$$\Lambda_c^+ \rightarrow \Sigma^+ \gamma$$
, $\Xi_c^0 \rightarrow \Xi^0 \gamma$

$$\Xi_{c} \rightarrow \Lambda_{c} \gamma$$
, $\Omega_{c} \rightarrow \Xi_{c} \gamma$

- i) e.m. penguin c→uγ
- ii) γ emission from external quark in W-exchange

 γ emission from W boson in W-exchange

$$Br(\Lambda_c^+ \to \Sigma^+ \gamma) = 4.9 \times 10^{-5}, \qquad \alpha = -0.86$$

$$Br(\Xi_c^0 \to \Xi^0 \gamma) = 3.6 \times 10^{-5}, \qquad \alpha = -0.86$$

Review articles:

- Korner, Kramer, Pirjol, Prog. Part. Nucl. Phys. 33, 787 (1994)
- Bianco, Fabbri, Benson, Bigi, hep-ex/0309021