Charmed Baryons Hai-Yang Cheng (鄭海揚) Academia Sinica, Taipei BESIII yellow book meeting Beijing, November 5, 2006 #### Contents | I. Introduction | 2 | |--|--| | II. Production of charmed baryons at BESIII | 3 | | III. Spectroscopy | 3 | | IV. Strong decaysA. Strong decays of s-wave charmed baryonsB. Strong decays of p-wave charmed baryons | 7
7
9 | | V. Lifetimes | 11 | | VI. Hadronic weak decays A. Quark-diagram scheme B. Dynamical model calculation C. Discussions 1. Decay asymmetry 2. Λ_c^+ decays 3. Ξ_c^+ decays 4. Ξ_c^0 decays 5. Ω_c^0 decays D. Charm-flavor-conserving weak decays | 17
18
19
22
22
24
25
26
26 | | VII. Semileptonic decays | 27 | | VIII. Electromagnetic and Weak Radiative decays A. Electromagnetic decays B. Weak radiative decays | 28
28
31 | | References | 32 | # **Charmed baryon production at BESIII** If \boxtimes s > 4.6 GeV, \Rightarrow charmed baryon physics In order to estimate the number of charmed baryon events produced at BESIII, one needs to know luminosity, $\sigma(e^+e^-\to c\underline{c})$, fragmentation function of $c\to hadrons$ Chao-His Chang, Jian-Ping Ma, Cong-Feng Qiao, Xing-Gang Wu hep-ph/0610205 "Hadronic production of the doubly charmed baryon Ξ_{cc} with intrinsic charm" # **Spectroscopy** In SU(3) representation, diquark = $3 \times 3 = 3 + 6$ 3: $\Lambda_c^+, \Xi_c^+, \Xi_c^0$, - all decay weakly - 6: $\Omega_c^{~0}, \Xi'^+_{~c}, \Xi'^0_{~c}, \Sigma_c^{~++,+,0}$ only $\Omega_c^{~0}$ decays weakly - Ω_{c}^{*0} Ξ^{*+}_{c} , Ξ^{*0}_{c} , $\Sigma_{c}^{*++,+,0}$ (a) Many new resonances observed: Ground state: Ω_c^* with mass=2768.3±3.0 MeV Orbitally excited p-wave states: L=1 e.g. $$\Lambda_c(2593)$$, $\Lambda_c(2625) = \Lambda_{c1}(1/2^-,3/2^-)$ Positive parity excitations: L=2,1,0 e.g. $$J^{P}[\Lambda_{c}(2880)]=5/2^{+}$$ # **Orbitally excited charmed baryon states** $$L_k+L_K=L$$ (not $L_k+L_K=L$) #### Two possible p-wave states: 1. $$L_k=1$$, $L_K=0$; antisymmetric under $q_1 \leftrightarrow q_2$ 2. $$L_k=0$$, $L_K=1$; symmetric under $q_1 \leftrightarrow q_2$ $$J_1=S_1+L$$, $J=S_c+J_1$ | State | SU(3) | S_{ℓ} | L_{ℓ} | $J_\ell^{P_\ell}$ | State | SU(3) | S_{ℓ} | $L_{m{\ell}}$ | $J_\ell^{P_\ell}$ | |--|-------|------------|------------|-------------------|--|-------|------------|---------------|-------------------| | $\Lambda_{c1}(rac{1}{2}, rac{3}{2})$ | 3 | 0 | 1 | 1- | $\Xi_{c1}(rac{1}{2}, rac{3}{2})$ | 3 | 0 | 1 | 1- | | $\Sigma_{c0}(rac{1}{2})$ | 6 | 1 | 1 | 0- | $\Xi_{c0}'(\frac{1}{2})$ | 6 | 1 | 1 | 0- | | $\Sigma_{c1}(rac{1}{2}, rac{3}{2})$ | 6 | 1 | 1 | 1- | $\Xi_{c1}'(\frac{1}{2},\frac{3}{2})$ | 6 | 1 | 1 | 1- | | $\Sigma_{c2}(rac{3}{2}, rac{5}{2})$ | 6 | 1 | 1 | 2- | $\Xi_{c2}'(\frac{3}{2},\frac{5}{2})$ | 6 | 1 | 1 | 2- | | $ ilde{\Sigma}_{c1}(rac{1}{2}, rac{3}{2})$ | 6 | 0 | 1 | 1- | $\tilde{\Xi}_{c1}^{\prime}(rac{1}{2}, rac{3}{2})$ | 6 | 0 | 1 | 1- | | $\tilde{\Lambda}_{c0}(rac{1}{2})$ | 3 | 1 | 1 | 0- | $ ilde{\Xi}_{c0}(rac{1}{2})$ | 3 | 1 | 1 | 0- | | $ ilde{\Lambda}_{c1}(rac{1}{2}, rac{3}{2})$ | 3 | 1 | 1 | 1- | $ ilde{\Xi}_{c1}(rac{1}{2}, rac{3}{2})$ | 3 | 1 | 1 | 1- | | $ ilde{\Lambda}_{c2}(frac{3}{2}, frac{5}{2})$ | 3 | 1 | 1 | 2- | $ ilde{\Xi}_{c2}(frac{3}{2}, frac{5}{2})$ | 3 | 1 | 1 | 2- | **symmetric** antisymmetric ## **Positive parity excitations:** 1. $$L_k=2$$, $L_K=0$; $L_k=0$, $L_K=2$ symmetric under $q_1\leftrightarrow q_2$; $L=2$ 2. $$L_k=L_K=1$$ antisymmetric under $q_1\leftrightarrow q_2$; L=2,1,0 | State | $\mathrm{SU}(3)_F$ | S_{ℓ} | L_{ℓ} | $J_\ell^{P_\ell}$ | State | $\mathrm{SU}(3)_F$ | S_{ℓ} | L_ℓ | $J_\ell^{P_\ell}$ | |--|--------------------|------------|------------|-------------------|---|--------------------|------------|----------|-------------------| | $\Lambda_{c2}(rac{3}{2}^+, rac{5}{2}^+) \ ilde{\Lambda}_{c1}(rac{1}{2}^+, rac{3}{2}^+)$ | 3 | 0 | 2 | 2+ | $\Sigma_{c1}(\frac{1}{2}^+,\frac{3}{2}^+) \ \Sigma_{c2}(\frac{3}{2}^+,\frac{5}{2}^+) \ \Sigma_{c3}(\frac{5}{2}^+,\frac{7}{2}^+) \ \tilde{\Sigma}_{c0}(\frac{1}{2}^+)$ | 6 | 1 | 2 | 1+ | | $\tilde{\Lambda}_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \ \tilde{\Lambda}_{c0}(\frac{1}{2}^+, \frac{3}{2}^+) \ \tilde{\Lambda}_{c1}'(\frac{1}{2}^+, \frac{3}{2}^+)$ | 3 | 1 | 0 | 1+ | $\Sigma_{c2}(\frac{3}{2}^+,\frac{5}{2}^+)$ | 6 | 1 | 2 | 2+ | | $\tilde{\Lambda}'_{\alpha}(\frac{1}{2}^+)$ | 3 | 1 | 1 | 0+ | $\Sigma_{c3}(rac{ ilde{5}}{2}^+, rac{ ilde{7}}{2}^+)$ | 6 | 1 | 2 | 3^+ | | $ ilde{\Lambda}'_{c1}(rac{1}{2}^+, rac{3}{2}^+)$ | 3 | 1 | 1 | 1+ | —cu(') / | 6 | 0 | 0 | 0+ | | $\tilde{\Lambda}'_{c2}(\frac{3}{2}^+,\frac{5}{2}^+)$ | 3 | 1 | 1 | 2^+ | $ ilde{\Sigma}_{c1}(rac{1}{2}^+, rac{3}{2}^+) \ ilde{\Sigma}_{c2}(rac{3}{2}^+, rac{5}{2}^+)$ | 6 | 0 | 1 | 1+ | | $\tilde{\Lambda}_{c1}''(\frac{1}{2}^+,\frac{3}{2}^+)$ | 3 | 1 | 2 | 1+ | $ \tilde{\Sigma}_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \\ \tilde{\Sigma}_{c2}(\frac{3}{2}^+, \frac{5}{2}^+) $ | 6 | 0 | 2 | 2+ | | $\tilde{\Lambda}_{c2}''(\frac{3}{2}^+,\frac{5}{2}^+)$ | 3 | 1 | 2 | 2^+ | | | | | | | $\tilde{\Lambda}'_{c1}(\frac{1}{2}^+, \frac{3}{2}^+)$ $\tilde{\Lambda}'_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$ $\tilde{\Lambda}''_{c1}(\frac{1}{2}^+, \frac{3}{2}^+)$ $\tilde{\Lambda}''_{c1}(\frac{3}{2}^+, \frac{5}{2}^+)$ $\tilde{\Lambda}''_{c3}(\frac{5}{2}^+, \frac{7}{2}^+)$ $\Xi_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$ $\Xi_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$ | 3 | 1 | 2 | 3^+ | | | | | | | $\Xi_{c2}(\frac{3}{2}^+, \frac{5}{2}^+) \\ \tilde{\Xi}_{c1}(\frac{1}{2}^+, \frac{3}{2}^+)$ | 3 | 0 | 2 | 2+ | $\Xi'_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \\ \Xi'_{c2}(\frac{3}{2}^+, \frac{5}{2}^+) \\ \Xi'_{c3}(\frac{5}{2}^+, \frac{7}{2}^+) \\ \widetilde{\Xi}'_{c3}(\frac{1}{2}^+)$ | 6 | 1 | 2 | 1+ | | $ \Xi_{c1}(\frac{1}{2}^{-},\frac{3}{2}^{-}) $ | 3 | 1 | 0 | 1+ | $\Xi_{c2}^{\prime}(\frac{3}{2}^{+},\frac{5}{2}^{+})$ | 6 | 1 | 2 | 2+ | | $\tilde{\Xi}_{c0}^{\prime\prime}(\frac{1}{2}^+)$ | 3 | 1 | 1 | 0_{+} | $\Xi'_{c3}(\frac{5}{2}^+,\frac{7}{2}^+)$ | 6 | 1 | 2 | 3^+ | | $\tilde{\Xi}_{c1}''(\frac{1}{2}^+,\frac{3}{2}^+)$ | 3 | 1 | 1 | 1+ | $\tilde{\Xi}'_{c0}(\frac{1}{2}^+)$ $\tilde{\Xi}'_{c1}(\frac{1}{2}^+3^+)$ | 6 | 0 | 0 | 0+ | | $\tilde{\Xi}_{c2}''(\frac{3}{2}^+,\frac{5}{2}^+)$ | 3 | 1 | 1 | 2^+ | $\tilde{\Xi}'_{c1}(\frac{1}{2}^+,\frac{3}{2}^+)$ | 6 | 0 | 1 | 1+ | | $\tilde{\Xi}_{c2}^{"'}(\frac{3}{2}^+, \frac{5}{2}^+) \\ \tilde{\Xi}_{c1}^{"'}(\frac{1}{2}^+, \frac{3}{2}^+)$ | 3 | 1 | 2 | 1+ | $\tilde{\Xi}'_{c1}(\frac{1}{2}^+, \frac{3}{2}^+) \\ \tilde{\Xi}'_{c2}(\frac{3}{2}^+, \frac{5}{2}^+)$ | 6 | 0 | 2 | 2+ | | $\tilde{\Xi}_{c2}^{""}(\frac{\bar{3}}{2}^+,\frac{\bar{5}}{2}^+)$ | 3 | 1 | 2 | 2^+ | | | | | | | $\tilde{\Xi}_{c2}^{""}(\frac{3}{2}^+,\frac{5}{2}^+) \\ \tilde{\Xi}_{c3}^{""}(\frac{5}{2}^+,\frac{7}{2}^+)$ | 3 | 1 | 2 | 3+ | | | | | | | | State | J^P | S_ℓ | L_{ℓ} | $J_\ell^{P_\ell}$ | Mass | Width | Decay modes | |----------------------------|--------------------------|---|----------|------------|-------------------|--------------------|---------------------|--| | | Λ_c^+ | 1+
2 | 0 | 0 | 0+ | 2286.46 ± 0.14 | | weak | | | $\Lambda_c(2593)^+$ | 1-
2-
3-
2 | 0 | 1 | 1- | 2595.4 ± 0.6 | $3.6^{+2.0}_{-1.3}$ | $\Sigma_c\pi,\Lambda_c\pi\pi$ | | | $\Lambda_c(2625)^+$ | 3
2 | 0 | 1 | 1- | 2628.1 ± 0.6 | < 1.9 | $\Lambda_c\pi\pi, \Sigma_c\pi$ | | ¹/₂ ⁺ → | $\Lambda_c(2765)^+$ | ?? | ? | ? | ? | 2766.6 ± 2.4 | 50 | $\Sigma_c\pi, \Lambda_c\pi\pi$ | | - | $\Lambda_c(2880)^+$ | <u>5</u> + | ? | ? | ? | 2881.5 ± 0.3 | 5.5 ± 0.6 | $\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p$ | | 3/2+,5/2- | $\Lambda_c(2940)^+$ | ?? | ? | ? | ? | 2938.8 ± 1.1 | 13.0 ± 5.0 | $\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p$ | | | $\Sigma_c(2455)^{++}$ | 1+
2 | 1 | 0 | 1+ | 2454.02 ± 0.18 | 2.23 ± 0.30 | $\Lambda_c\pi$ | | | $\Sigma_c(2455)^+$ | 1+
2 | 1 | 0 | 1+ | 2452.9 ± 0.4 | < 4.6 | $\Lambda_c\pi$ | | | $\Sigma_c(2455)^0$ | 1+
2 | 1 | 0 | 1+ | 2453.76 ± 0.18 | 2.2 ± 0.4 | $\Lambda_c\pi$ | | | $\Sigma_c(2520)^{++}$ | 3+
2 | 1 | 0 | 1+ | 2518.4 ± 0.6 | 14.9 ± 1.9 | $\Lambda_c\pi$ | | | $\Sigma_c(2520)^+$ | 3+
2 | 1 | 0 | 1+ | 2517.5 ± 2.3 | < 17 | $\Lambda_c\pi$ | | | $\Sigma_{\rm c}(2520)^0$ | 3+
2 | 1 | 0 | 1+ | 2518.0 ± 0.5 | 16.1 ± 2.1 | $\Lambda_c\pi$ | | 3/2- | $\Sigma_c(2800)^{++}$ | $\frac{3}{2}^{-}$? | 1 | 1 | 2- | 2801^{+4}_{-6} | 75^{+22}_{-17} | $\Lambda_c \pi, \Sigma_c^{(*)} \pi, \Lambda_c \pi \pi$ | | | $\Sigma_c(2800)^+$ | 3 ⁻ ? | 1 | 1 | 2- | 2792^{+14}_{-5} | 62^{+60}_{-40} | $\Lambda_c\pi, \Sigma_c^{(*)}\pi, \Lambda_c\pi\pi$ | | | $\Sigma_{c}(2800)^{0}$ | $\frac{3}{2}^{-}$? | 1 | 1 | 2- | 2802^{+4}_{-7} | 61^{+28}_{-18} | $\Lambda_c\pi, \Sigma_c^{(*)}\pi, \Lambda_c\pi\pi$ | | | Ξ_c^+ | 1+
2 | 0 | 0 | 0+ | 2467.9 ± 0.4 | | weak | | Only | Ξ_c^0 | 1+
5 | 0 | 0 | 0+ | 2471.0 ± 0.4 | | weak | | parity of | $\Xi_c^{\prime+}$ | 1+
2
1+
2
3+
2 | 1 | 0 | 1+ | 2575.7 ± 3.1 | | $\Xi_c\gamma$ | | Λ _c & | Ξ'0 | 1+
2 | 1 | 0 | 1+ | 2578.0 ± 2.9 | | $\Xi_c \gamma$ | | Λ_c° (2880) | $\Xi_c(2645)^+$ | 3+
2 | 1 | 0 | 1+ | 2646.6 ± 1.4 | < 3.1 | $\Xi_c\pi$ | | has been | $\Xi_c(2645)^0$ | $\frac{3}{2}$ | 1 | 0 | 1+ | 2646.1 ± 1.2 | < 5.5 | $\Xi_c\pi$ | | measured | $\Xi_c(2790)^+$ | 1- | 0 | 1 | 1- | 2789.2 ± 3.2 | < 15 | $\Xi_c'\pi$ | | | $\Xi_c(2790)^0$ | 1 -
2 -
3 -
2 -
3 -
2 -
2 - | 0 | 1 | 1- | 2791.9 ± 3.3 | < 12 | $\Xi_c'\pi$ | | | $\Xi_c(2815)^+$ | <u>3</u> - | 0 | 1 | 1- | 2816.5 ± 1.2 | < 3.5 | $\Xi_c^*\pi,\Xi_c\pi\pi,\Xi_c'\pi$ | | | $\Xi_c(2815)^0$ | 3-
2 | 0 | 1 | 1- | 2818.2 ± 2.1 | < 6.5 | $\Xi_c^*\pi,\Xi_c\pi\pi,\Xi_c'\pi$ | | 1/2+ | $\Xi_c(2980)^+$ | ?? | ? | ? | ? | 2971.1 ± 1.7 | 25.2 ± 3.0 | see Table VII | | 1/2+ | $\Xi_c(2980)^0$ | ?? | ? | ? | ? | 2977.1 ± 9.5 | 43.5 | see Table VII | | 5/2+ | $\Xi_c(3077)^+$ | ?? | ? | ? | ? | 3076.5 ± 0.6 | 6.2 ± 1.1 | see Table VII | | 5/2+ | $\Xi_c(3077)^0$ | ?? | ? | ? | ? | 3082.8 ± 2.3 | 5.2 ± 3.6 | see Table VII | | | Ω_c^c | 1+
2 | 1 | 0 | 1+ | 2697.5 ± 2.6 | | weak | | - | $\Omega_c(2768)^0$ | 3+
2 | 1 | 0 | 1+ | 2768.3 ± 3.0 | | $\Omega_c \gamma$ | # An ideal place for testing heavy quark symmetry and chiral symmetry: heavy hadron chiral perturbation theory (HHChPT) #### Strong decays of s-wave charmed baryons | Decay | Expt. | This work | Tawfiq | Ivanov | Huang | Albertus | |--|-----------------|----------------|------------------|------------------|-------------|------------------| | | [7] | ннсьрт | et al. [27] | et al. [28] | et al. [29] | et al. [30] | | $\Sigma_c^{++} o \Lambda_c^+ \pi^+$ | 2.23 ± 0.30 | input | 1.51 ± 0.17 | 2.85 ± 0.19 | 2.5 | 2.41 ± 0.07 | | $\Sigma_c^+ o \Lambda_c^+ \pi^0$ | < 4.6 | 2.6 ± 0.4 | 1.56 ± 0.17 | 3.63 ± 0.27 | 3.2 | 2.79 ± 0.08 | | $\Sigma_c^0 o \Lambda_c^+ \pi^-$ | 2.2 ± 0.4 | 2.2 ± 0.3 | 1.44 ± 0.16 | 2.65 ± 0.19 | 2.4 | 2.37 ± 0.07 | | $\Sigma_c(2520)^{++} ightarrow \Lambda_c^+ \pi^+$ | 14.9 ± 1.9 | 16.7 ± 2.3 | 11.77 ± 1.27 | 21.99 ± 0.87 | 8.2 | 17.52 ± 0.75 | | $\Sigma_c(2520)^+ o \Lambda_c^+ \pi^0$ | < 17 | 17.4 ± 2.3 | | | 8.6 | 17.31 ± 0.74 | | $\Sigma_c(2520)^0 ightarrow \Lambda_c^+\pi^-$ | 16.1 ± 2.1 | 16.6 ± 2.2 | 11.37 ± 1.22 | 21.21 ± 0.81 | 8.2 | 16.90 ± 0.72 | | $\Xi_c(2645)^+ \to \Xi_c^{0,+} \pi^{+,0}$ | < 3.1 | 2.8 ± 0.4 | 1.76 ± 0.14 | 3.04 ± 0.37 | | 3.18 ± 0.10 | | $\Xi_c(2645)^0 \to \Xi_c^{+,0} \pi^{-,0}$ | < 5.5 | 2.9 ± 0.4 | 1.83 ± 0.06 | 3.12 ± 0.33 | | 3.03 ± 0.10 | in units of MeV #### Strong decays of p-wave charmed baryons | | Decay | Expt. | This work | Tawfiq | Ivanov | Huang | Zhu | |-------------------|--|------------------------|------------------------|-----------------|-------------------|-----------------------|-------| | | | [7] | ннсьрт | et al. [27] | et al. [28] | et al. [29] | [34] | | h ₂ | | $2.63^{+1.56}_{-1.09}$ | input | | | 2.5 | | | | | $0.65^{+0.41}_{-0.31}$ | $0.62^{+0.37}_{-0.26}$ | 1.47 ± 0.57 | 0.79 ± 0.09 | $0.55^{+1.3}_{-0.55}$ | 0.64 | | | $\Lambda_c(2593)^+ o \Sigma_c^0 \pi^+$ | $0.67^{+0.41}_{-0.31}$ | $0.67^{+0.40}_{-0.28}$ | 1.78 ± 0.70 | 0.83 ± 0.09 | 0.89 ± 0.86 | 0.86 | | | $\Lambda_c(2593)^+ o \Sigma_c^+ \pi^0$ | | $1.34^{+0.79}_{-0.55}$ | 1.18 ± 0.46 | 0.98 ± 0.12 | 1.7 ± 0.49 | 1.2 | | | $\Lambda_c(2625)^+ ightarrow \Sigma_c^{++} \pi^-$ | < 0.10 | ≲ 0.028 | 0.44 ± 0.23 | 0.076 ± 0.009 | 0.013 | 0.011 | | | $\Lambda_c(2625)^+ o \Sigma_c^0 \pi^+$ | < 0.09 | ≤ 0.028 | 0.47 ± 0.25 | 0.080 ± 0.009 | 0.013 | 0.011 | | | $\Lambda_c(2625)^+ o \Sigma_c^+ \pi^0$ | | ≲ 0.040 | 0.42 ± 0.22 | 0.095 ± 0.012 | 0.013 | 0.011 | | | $\Lambda_c(2625)^+ o \Lambda_c^+ \pi\pi$ | < 1.9 | ≲ 0.21 | | | 0.11 | | | | $\Sigma_c(2800)^{++} \to \Lambda_c \pi, \Sigma_c^{(*)} \pi$ | | input | | | | | | h ₁₀ ← | $\Sigma_c(2800)^+ o \Lambda_c \pi, \Sigma_c^{(*)} \pi$ | 62^{+60}_{-40} | input | | | | | | | $\Sigma_{\rm c}(2800)^0 \to \Lambda_{\rm c}\pi, \Sigma_{\rm c}^{(*)}\pi$ | 61^{+28}_{-18} | input | | | | | | | $\Xi_c(2790)^+ o \Xi_c^{\prime 0,+} \pi^{+,0}$ | < 15 | $7.7^{+4.5}_{-3.2}$ | | | | | | | $\Xi_c(2790)^0 \to \Xi_c^{\prime +,0} \pi^{-,0}$ | < 12 | $8.1^{+4.8}_{-3.4}$ | | | | | | | $\Xi_c(2815)^+ \to \Xi_c^{*+,0} \pi^{0,+}$ | < 3.5 | $3.2^{+1.9}_{-1.3}$ | 2.35 ± 0.93 | 0.70 ± 0.04 | | | | | $\Xi_c(2815)^0 \to \Xi_c^{*+,0}\pi^{-,0}$ | < 6.5 | $3.5^{+2.0}_{-1.4}$ | | | | | in units of MeV isospin violation: $$\Sigma_c^+\pi^0\sim 2~\Sigma_c^{~0}\pi^+$$, $\Lambda_c\pi^0\pi^0\sim \Lambda_c\pi^+\pi^-$ as π^0 is lighter than π^{\pm} #### Lifetimes #### 10⁻¹⁵s | [I]
+ | 442±26 | |-----------------------|-----------------------------------| | Λ_{c}^{+} | 200±6 | | | 112 ⁺¹³ ₋₁₀ | | $\Omega_{ m c}^{\;0}$ | 69±12 | | D+ | 1040±7 | |------------------|-----------| | D _s + | 500±7 | | D ⁰ | 410.1±1.5 | #### heavy quark expansion: $$\Gamma(B_c \to f) = \frac{G_F^2 m_c^5}{192\pi^3} V_{CKM} \left(A_0 + \frac{A_2}{m_c^2} + \frac{A_3}{m_c^3} + \dots \right)$$ Pauli interference & W-exchange are $1/m_c^3$ corrections, enhanced by p.s. enhancement factor of $16\pi^2$ c decay destructive P.I. W-exchange constructive P.I. | | Dec | Ann | Int(-) | Int(+) | Semi-
inclusive | $\tau(10^{-13}s)$ | Expt | |-----------------------|-----|-----------------|--------|--------------------|--------------------|-------------------|--| | Ξc+ | 1 | s ² | 1 | c ² | small P.I. | 3.68 | 4.42±0.26 | | Λ_{c}^{+} | 1 | c ² | 1 | s ² | | 2.64 | 2.00±0.06 | | Ξ _c 0 | 1 | 1 | 1 | 1 | small P.I. | 1.93 | 1.12 ^{+0.13} _{-0.10} | | $\Omega_{ m c}^{\ 0}$ | 1 | 6s ² | | 10/3c ² | large P.I. | 1.71 | 0.69±0.12 | $s=sin\theta_{C}$, $c=cos\theta_{C}$ - Lifetime hierarchy $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$ is qualitatively understandable, but not quantitatively. - It has been claimed that lifetimes can be accommodated (except Ξ_c^+) provided that hybrid renormalization is employed and replacement of f_D by F_D is made (Shifman, Blok, Guberina, Bigi.....) - It is difficult to explain $\tau(\Xi_c^+)/\tau(\Lambda_c^+)=2.21\pm0.15$ - 1/m_c expansion is not well convergent and sensible # Hadronic weak decays #### **Complications:** - **♦** Baryons are made of three quarks - Factorization approximation generally doesn't work W-exchange is not subject to helicity & color suppression - ◆ Current algebra is no longer applicable as the outgoing meson is far from being "soft". Also this soft-meson technique is not applicable to vector meson production # **Hadronic weak decays** # **■** Diagrammatic scheme - Two distinct internal W emission diagrams, three different W exchange diagrams - Need information of decay asymmetry to extract s-wave and p-wave amplitudes separately $$M(B_i \to B_f + P) = i\overline{u}_f (A + B\gamma_5)u_i$$ ■ Dynamical model calculation pole model: **Consider low-lying pole contributions:** s-wave is governed by ½ resonances p-wave is dominated by ½ ground-state baryons Relativistic QM: Korner, Kramer, Ivanov,... # **BRs of Cabibbo-allowed decays** | Decay | Körner, | Xu, | Cheng, | Ivanov | Żenczykowski | Sharma, | Expt. | |---------------------------------|-------------|------------|------------|-------------|--------------|------------|-------------------| | | Krämer [56] | Kamal [60] | Tseng [59] | et al. [74] | [73] | Verma [72] | [3] | | $\Lambda_c^+ o \Lambda \pi^+$ | input | 1.62 | 0.88 | 0.79 | 0.54 | 1.12 | $0.90 \pm\ 0.28$ | | $\Lambda_c^+ o \Sigma^0 \pi^+$ | 0.32 | 0.34 | 0.72 | 0.88 | 0.41 | 1.34 | $0.99 {\pm}~0.32$ | | $\Lambda_c^+ o \Sigma^+ \pi^0$ | 0.32 | 0.34 | 0.72 | 0.88 | 0.41 | 1.34 | $1.00 \pm\ 0.34$ | | $\Lambda_c^+ o \Sigma^+ \eta$ | 0.16 | | | 0.11 | 0.94 | 0.57 | $0.48 \pm\ 0.17$ | | $\Lambda_c^+ o \Sigma^+ \eta'$ | 1.28 | | | 0.12 | 0.12 | 0.10 | | | $\Lambda_c^+ o par K^0$ | input | 1.20 | 1.26 | 2.06 | 1.79 | 1.64 | $2.3 \pm\ 0.6$ | | $\Lambda_c^+ o \Xi^0 K^+$ | 0.26 | 0.10 | | 0.31 | 0.36 | 0.13 | $0.39 \pm\ 0.14$ | | $\Xi_c^+ o \Sigma^+ \bar{K}^0$ | 6.45 | 0.44 | 0.84 | 3.08 | 1.56 | 0.04 | | | $\Xi_c^+ o \Xi^0 \pi^+$ | 3.54 | 3.36 | 3.93 | 4.40 | 1.59 | 0.53 | 0.55 ± 0.16^a | | $\Xi_c^0 o \Lambda \bar K^0$ | 0.12 | 0.37 | 0.27 | 0.42 | 0.35 | 0.54 | seen | | $\Xi_c^0 o \Sigma^0 \bar K^0$ | 1.18 | 0.11 | 0.13 | 0.20 | 0.11 | 0.07 | | | $\Xi_c^0 o \Sigma^+ K^-$ | 0.12 | 0.12 | | 0.27 | 0.36 | 0.12 | | | $\Xi_c^0 o \Xi^0 \pi^0$ | 0.03 | 0.56 | 0.28 | 0.04 | 0.69 | 0.87 | | | $\Xi_c^0 o \Xi^0 \eta$ | 0.24 | | | 0.28 | 0.01 | 0.22 | | | $\Xi_c^0 o \Xi^0 \eta'$ | 0.85 | | | 0.31 | 0.09 | 0.06 | | | $\Xi_c^0 o \Xi^- \pi^+$ | 1.04 | 1.74 | 1.25 | 1.22 | 0.61 | 2.46 | seen | | $\Omega_c^0 o \Xi^0 ar K^0$ | 1.21 | | 0.09 | 0.02 | | | | ### Decay asymmetry α for Cabibbo-allowed decays # Longitudinal pol. of daughter baryon from unpol. parent baryon information on the relative sign between s- and p-waves | Decay | Körner, | Xu, | Cheng, | Ivanov | Żenczykowski | Sharma, | Expt. | |---------------------------------|-------------|------------|------------|-------------|--------------|------------|-----------------| | | Krämer [56] | Kamal [60] | Tseng [59] | et al. [74] | [73] | Verma [72] | [3] | | $\Lambda_c^+ o \Lambda \pi^+$ | -0.70 | -0.67 | -0.95 | -0.95 | -0.99 | -0.99 | -0.91 ± 0.15 | | $\Lambda_c^+ o \Sigma^0 \pi^+$ | 0.70 | 0.92 | 0.78 | 0.43 | 0.39 | -0.31 | | | $\Lambda_c^+ o \Sigma^+ \pi^0$ | 0.71 | 0.92 | 0.78 | 0.43 | 0.39 | -0.31 | $-0.45\pm~0.32$ | | $\Lambda_c^+ o \Sigma^+ \eta$ | 0.33 | | | 0.55 | 0 | -0.91 | | | $\Lambda_c^+ o \Sigma^+ \eta'$ | -0.45 | | | -0.05 | -0.91 | 0.78 | | | $\Lambda_c^+ o par K^0$ | -1.0 | 0.51 | -0.49 | -0.97 | -0.66 | -0.99 | | | $\Lambda_c^+ o \Xi^0 K^+$ | 0 | 0 | | 0 | 0 | 0 | | | $\Xi_c^+ o \Sigma^+ \bar{K}^0$ | -1.0 | 0.24 | -0.09 | -0.99 | 1.00 | 0.54 | | | $\Xi_c^+ o \Xi^0 \pi^+$ | -0.78 | -0.81 | -0.77 | -1.0 | 1.00 | -0.27 | | | $\Xi_c^0 o \Lambda \bar K^0$ | -0.76 | 1.0 | -0.73 | -0.75 | -0.29 | -0.79 | | | $\Xi_c^0 o \Sigma^0 \bar K^0$ | -0.96 | -0.99 | -0.59 | -0.55 | -0.50 | 0.48 | | | $\Xi_c^0 o \Sigma^+ K^-$ | 0 | 0 | | 0 | 0 | 0 | | | $\Xi_c^0 o \Xi^0 \pi^0$ | 0.92 | 0.92 | -0.54 | 0.94 | 0.21 | -0.80 | | | $\Xi_c^0 o \Xi^0 \eta$ | -0.92 | | | -1.0 | -0.04 | 0.21 | | | $\Xi_c^0 o \Xi^0 \eta'$ | -0.38 | | | -0.32 | -1.00 | 0.80 | | | $\Xi_c^0 o \Xi^- \pi^+$ | -0.38 | -0.38 | -0.99 | -0.84 | -0.79 | -0.97 | -0.6 ± 0.4 | | $\Omega_c^0 o \Xi^0 ar K^0$ | 0.51 | | -0.93 | -0.81 | | | | ?? # Decay modes that proceed through factorizable diagrams $$\Lambda_c^+ \rightarrow p\phi$$ $$|a_2| = 0.60 \pm 0.10$$, close to c_2 1/N_c is also applicable to charmed baryon sector $$\Omega_{\rm c}^{0} \rightarrow \Omega^{-} \pi^{+}$$ $$\Omega_{c}^{0} \rightarrow \Omega^{-}\pi^{+}$$ $$\Omega_{c}^{0} \rightarrow \Xi^{*0}\underline{\mathbf{K}}^{0}$$ $$\mathbf{a}_2$$ #### **Charm-flavor-conserving weak decays:** Light quarks undergo weak transitions, while c quark behaves as a "spectator" e.g. $\Xi_c \rightarrow \Lambda_c \pi$, $\Omega_c \rightarrow \Xi'_c \pi$ $$Br(\Xi_c^0 \to \Lambda_c^+ \pi^-) = 2.9 \times 10^{-4}$$ $$Br(\Xi_c^+ \to \Lambda_c^+ \pi^0) = 6.7 \times 10^{-4}$$ Br($$\Omega_c^0 \to \Xi'_c \pi^-$$)= 4.5× 10⁻⁶ should be readily accessible soon # **Semileptonic decays** Semileptonic rate depends on $B_c \rightarrow B$ form factors Six form factors are reduced to two in $m_0 \rightarrow \infty$ limit | | → NRQW | | \leftarrow | RQM | LFQM | QSR | QSR | | |---------------------------------------|---------------|-----------|--------------|-------------|------|---------------------|------------------|------------------| | Process | Pérez-Marcial | Singleton | Cheng, | Ivanov | Luo | Marques de Carvalho | Huang, | Expt. | | | et al. [85] | [86] | Tseng [81] | et al. [87] | [88] | et al. [89] | Wang [90] | [3] | | $\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$ | 11.2 (7.7) | 9.8 | 7.1 | 7.22 | 7.0 | 13.2 ± 1.8 | 10.9 ± 3.0 | 10.5 ± 3.0 | | | | | | -0.812 | | -1 | -0.88 ± 0.03 | -0.86 ± 0.04 | | $\Xi_c^0 o \Xi^- e^+ \nu_e$ | 18.1 (12.5) | 8.5 | 7.4 | 8.16 | 9.7 | | | seen | | $\Xi_c^+ \to \Xi^0 e^+ \nu_e$ | 18.4 (12.7) | 8.5 | 7.4 | 8.16 | 9.7 | | | seen | in units of 10¹⁰s⁻¹ # **Electromagnetic decays** $$B_6 \to B_{\overline{3}} + \gamma: \quad \Sigma_c \to \Lambda_c + \gamma, \; \Xi_c^{'} \to \Xi_c + \gamma$$ $$B_6^* \to B_{\overline{3}} + \gamma: \quad \Sigma_c^* \to \Lambda_c + \gamma, \; \Xi_c^{'*} \to \Xi_c + \gamma$$ $$B_6^* \to B_6 + \gamma: \quad \Sigma_c^* \to \Sigma_c + \gamma, \; \Xi_c^{'*} \to \Xi_c^{'} + \gamma, \; \Omega_c^* \to \Omega_c + \gamma$$ #### suitable framework: HHChPT+ QM | Decay | HHChPT | Ivanov | Bañuls | Tawfiq | Experiment | |--|--------------|----------------------------------|---------------|-------------|------------| | | +QM [23, 92] | et al. [87] | et al. [93] | et al. [94] | [3] | | $\Sigma_c^+ o \Lambda_c^+ \gamma$ | 88 | $\textbf{60.7} \pm \textbf{1.5}$ | | 87 | | | $\Sigma_c^{**+} \to \Sigma_c^{++} \gamma$ | 1.4 | | | 3.04 | | | $\Sigma_c^{*+} \to \Sigma_c^+ \gamma$ | 0.002 | 0.14 ± 0.004 | | 0.19 | | | $\Sigma_c^{*+} o \Lambda_c^+ \gamma$ | 147 | 151 ± 4 | | | | | $\Sigma_c^{*0} o \Lambda_c^0 \gamma$ | 1.2 | | | 0.76 | | | $\Xi_c^{\prime+} o \Xi_c^+ \gamma$ | 16 | 12.7 ± 1.5 | | | seen | | $\Xi_c^{\prime 0} ightarrow \Xi_c^0 \gamma$ | 0.3 | $\boldsymbol{0.17 \pm 0.02}$ | 1.2 ± 0.7 | | seen | | $\Xi_c^{\prime*+} o \Xi_c^+ \gamma$ | 54 | 54 ± 3 | | | | | $\Xi_c^{\prime*0} o \Xi_c^0 \gamma$ | 1.1 | $\boldsymbol{0.68 \pm 0.04}$ | 5.1 ± 2.7 | | | | $\Omega_c^{*0} \to \Omega_c^0 \gamma$ | 0.9 | | | | seen | in units of keV # Weak radiative decays Charm-flavor-changing $$\Lambda_c^+ \rightarrow \Sigma^+ \gamma$$, $\Xi_c^0 \rightarrow \Xi^0 \gamma$ $$\Xi_{c} \rightarrow \Lambda_{c} \gamma$$, $\Omega_{c} \rightarrow \Xi_{c} \gamma$ - i) e.m. penguin c→uγ - ii) γ emission from external quark in W-exchange γ emission from W boson in W-exchange $$Br(\Lambda_c^+ \to \Sigma^+ \gamma) = 4.9 \times 10^{-5}, \qquad \alpha = -0.86$$ $$Br(\Xi_c^0 \to \Xi^0 \gamma) = 3.6 \times 10^{-5}, \qquad \alpha = -0.86$$ #### **Review articles:** - Korner, Kramer, Pirjol, Prog. Part. Nucl. Phys. 33, 787 (1994) - Bianco, Fabbri, Benson, Bigi, hep-ex/0309021