"5th force" at BESIII

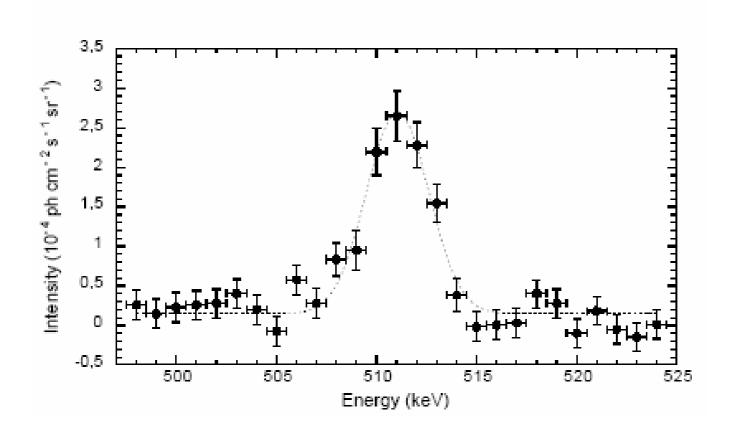
Shou-hua Zhu Peking University 2006.11

Prelude

- 511 KeV gamma ray observed (2003) by INTEGRAL might be due to O(MeV) dark matter annihilation (to electron-positron pair), which is mediated by "fifth force" (2004).
- Such kind of "fifth force" can be stronger than weak interaction at low energy (Q<<m_W).
- Such kind of "fifth force" could be observed at low energy BEPC-II.

天方夜潭?

1. Motivation for "5th force"


Theoretical motivations

- Extra gauge group exists in new physics beyond the standard model -> new gauge interaction $(5^{th}, 6^{th}...)$
- Experiments didn't give any clues yet.
- Two ways out:
- (1) high scale suppressed (weak scale or higher) [mainstream]
- (2)coupling suppressed (low energy scale)
 P. Fayet, many papers (>10) 1977~2006

In 2003...

P. Jean et al Astron. Astro. Phys. 407(2003) L55

In 2004...

 Excess of 511 KeV (SPI spectrometer on INTEGRAL) light could be due to dark matter annihilation

C. Boehm et.al., PRL2004

- Possible massive vector mediates interaction among MeV (scalar or majorana) dark matter and electron-positron
- Simplest case: vector gauge boson (U-boson)
 with mass O(1-100 MeV) ---- first sign of
 short distance "5th force"?

In 2006...

 Theoretical investigations of U boson at low energy electron-position colliders (B-factories and Phi-factories)

N. Borodatchenkova et al, PRL (2006)

2. "5th force" is ruled out?

Electron g-2 measurement

C. Boehm etal, NPB(2004)
N. Borodatchenkova etal, PRL(2006)

$$-6 \cdot 10^{-9} \le \left(\frac{1 \text{ MeV}}{M_U}\right)^2 \cdot \left(3g_{e_L}g_{e_R} - g_{e_L}^2 - g_{e_R}^2\right) \le 3 \cdot 10^{-8}$$

 g_{f_L} and g_{f_R}

the left– and right–handed $Uf\bar{f}$ couplings

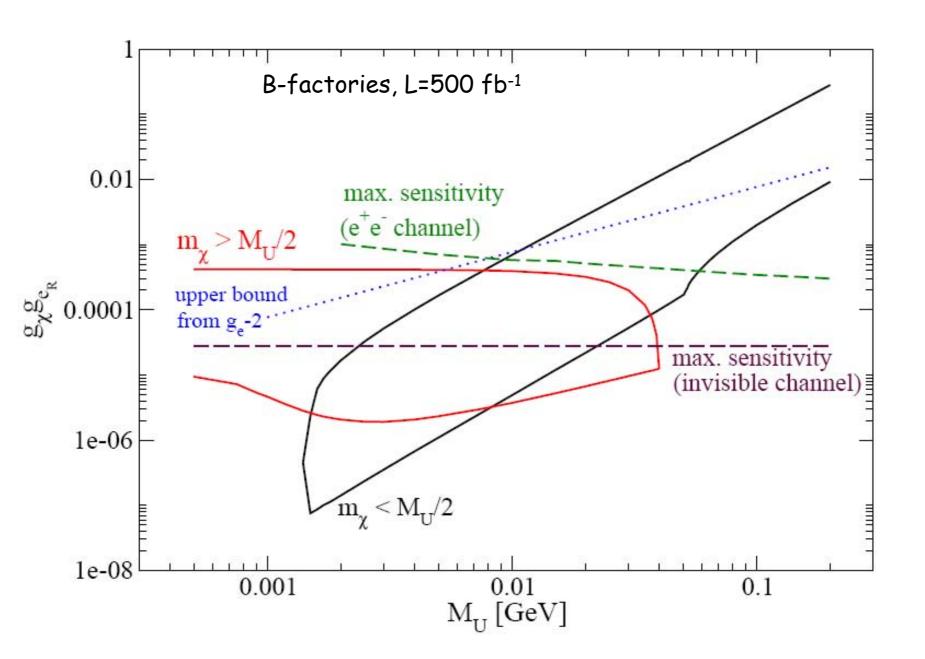
Electron-Neutrino scattering

P. Fayet, PRD(2004)

$$g_{\nu_L} \sqrt{g_{e_L}^2 + g_{e_R}^2} < M_U^2 G_F$$

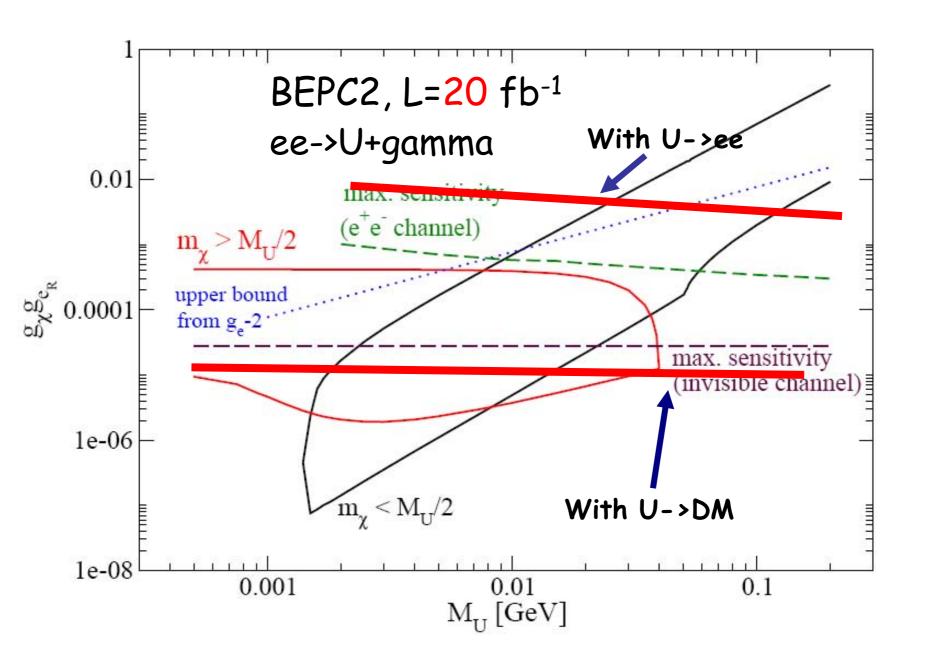
For $g_{e_L} = g_{\nu_L}$ and $g_{e_R} = 0$, this would exclude the entire DM-allowed range (which is invariant under $g_{e_R} \leftrightarrow g_{e_L}$)

Natural parameter choice:


 g_{vL} =0 and g_{eL} =0 if extra gauge group is direct product of the SM group, only g_{eR} is relevant.

Discover (exclude) 5th force at Band Phi-factories, via ee->U+gamma N. Borodatchenkova etal, PRL(2006)

FIG. 2: Parameter space of the model with a complex scalar as MeV Dark Matter χ annihilating through the exchange of spin-1 U bosons, for $g_{e_L} = g_{\nu} = 0$ and $g_{\chi} = 1$. Notation is as in Fig. 1, except that the indicated sensitivities are now those that can be achieved at the B-factories.


Why $g_R \ll g_{chi}$?

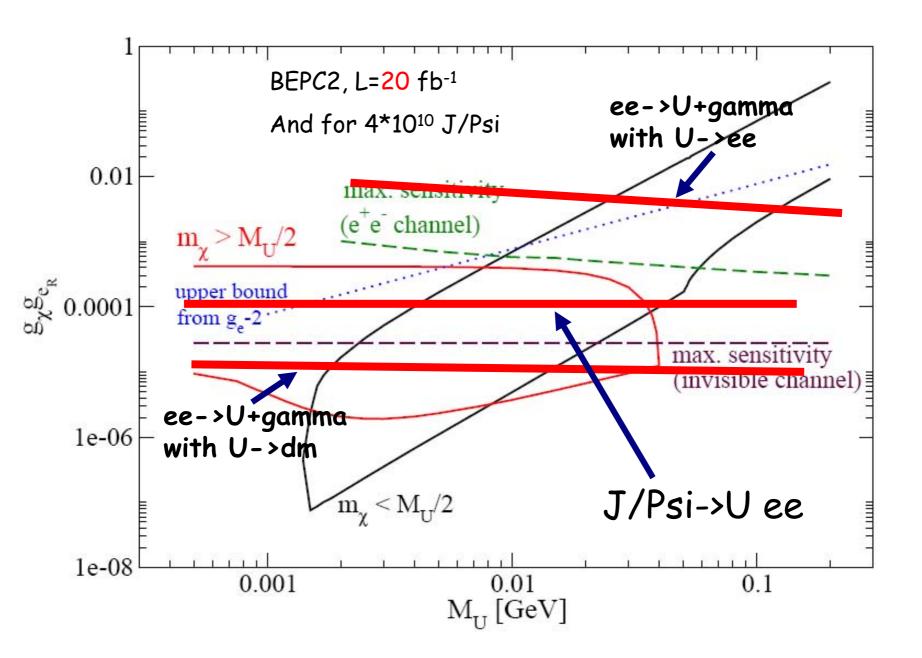
U couples to dark matter directly, but indirectly (via mixing with SM gauge bosons) with electron.

3. "Fifth force" at BESIII (preliminary results)

(A) via ee->U+gamma

(B) via J/Psi decay

"fifth force" in J/Psi decay(1)


- Why?
 (1) J/Psi in BES, 4*10^(10) (4 years)
 (2) Br(J/Psi->ee) ~ 5%
 - (3) Br(J/Psi->ee gamma) ~0.9% with E(gamma)>100 MeV

from PDG

 If U-boson does not decay into neutrino, J/Psi->ee U then U->ee (100% if mU<2 m_chi) or invisibly (100% if mU>2 m_chi)

"fifth force" in J/Psi decay (2)

- $Br(J/Psi-ee U)/Br(J/Psi-ee) \sim 0.5$ $g_R^2 for mU=20 MeV.$
- g_R can be measured down to 10^(-4) if we require 10 eeU events.
- Backgrounds to J/Psi->ee+ U(->DM) is negligibly small
- Backgrounds to J/Psi->ee+ U(->ee) is large

4. Conclusions

- Low energy collider (Q<<m_W) is irreplaceable, provided that INTEGREL 511KeV can be interpreted as the sign of weakly coupled "fifth force".
- Two methods to detect U-boson at BESIII:
 (1) ee->U+gamma
 (2) J/Psi decays into eeU
- If U decay dominantly into dark matter, the backgrounds (to neutrino) are small (Q/mW suppressed)
- If U decay dominantly into usual matter, the backgrounds are huge due to QED.
- Need more investigation, especially background studies.
- Realistic steps: (1) What can BESII tell us? (2)
 What will BESIII tell us?

Thanks for your attention!