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I. INTRODUCTION

According to the constituent quark model (CQM),
mesons and baryons are composed of qq̄ and qqq respec-
tively. CQM provides a convenient framework in the clas-
sification of hadrons. Most of experimentally observed
hadron states fit into this scheme quite neatly. Any states
beyond CQM are labelled as ”non-conventional” hadrons.

However, CQM is only a phenomenological model. It’s
not derived from the underlying theory of the strong
interaction—Quantum Chromodynamics (QCD). Hence
the CQM spectrum is not necessarily the same as the
physical spectrum in QCD, which remains ambiguous
and elusive after decades of intensive theoretical and ex-
perimental exploration. No one is able to either prove
or exclude the existence of these non-conventional states
rigorously since nobody can solve the confinement issue
in QCD now.

Hadron physicists generally take a modest and prac-
tical attitude. If one supposes these non-conventional
states exist, then the important issues are: (1) How to
determine their characteristic quantum numbers and es-
timate their masses, production cross-section and decay
widths reliably? (2) How and in which channels to dig
out the signal from backgrounds and identify them ex-
perimentally?

There are three classes of ”non-conventional” hadrons.
The first class are mesons with ”exotic” JPC quan-
tum numbers. The possible angular momentum, par-
ity and charge conjugation parity of a neutral qq̄
meson are JPC = 0++, 0−+, 1++, 1−−, 1+−, · · · . In
other words, a qq̄ meson can never have JPC =
0−−, 0+−, 1−+, 2+−, 3−+, · · · . Any state with these ”ex-
otic” quantum numbers is clearly beyond CQM. We want
to emphasize they are ”exotic” only in the context of
CQM. One can construct color-singlet local operators to
verify that these quantum numbers are allowed in QCD.
”Exotic” quantum numbers provide a powerful method
for the experimental search of these ”non-conventional”
states. In contrast, a qqq baryon in CQM exhausts all
possible JP , i.e., JP = 1
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The second class are hadrons with exotic flavor con-
tent. One typical example is the Θ+ pentaquark. It
was discovered in K+n channel with the quark content
uudds̄. Such a state is clearly beyond CQM. Exotic fla-
vor content is also an asset in the experimental search of
them.

The third class are hadrons which have or-
dinary quantum numbers but do not easily fit
into CQM. Let’s take the JPC = 0++ scalar
mesons as an example. Below 2 GeV, we have
σ, f0(980), f0(1370), f0(1500), f0(1710), f0(1790), f0(1810).
Within CQM there are only two scalars within this mass
range if we ignore the radial excitations. With radial
excitations, CQM could accommodate four scalars at
most. Clearly there is serious overpopulation of the
scalar spectrum. If all the above states are genuine, the
quark content of some of them is not qq̄. Overpopulation
of the spectrum provides another useful window in the
experimental search of non-conventional states.

Glueballs are hadrons composed of gluons. Quenched
lattice QCD simulation suggests the scalar glueball is the
lightest. Its mass is around (1.5 ∼ 1.7) GeV. Glueballs
with the other quantum numbers are high-lying. In the
large Nc limit, glueballs decouple from the conventional
qq̄ mesons [1]. Moreover, one gluon splits into two glu-
ons freely in this limit. Hence the number of the gluon
field inside glueballs is indefinite when Nc → ∞. In the
real world with Nc = 3, glueballs mix with nearby qq̄
mesons with the same quantum numbers, which renders
the experimental identification of scalar glueballs very
difficult. Reviews of glueballs can be found in the pre-
vious chapters. In the following we discuss the other
non-conventional hadrons according to their underlying
quark gluon structure.

II. THEORETICAL MODELS FOR HYBRID
MESONS

A. Large NC expansion

Hybrid mesons are composed of a pair of qq̄ and one
explicit gluon field G. In the large Nc limit, the ampli-
tude of creating a hybrid meson from the vacuum has
the same Nc order as that of creating a qq̄ meson [2]. If
kinematics and other conservation laws allow, the pro-
duction cross section of hybrid mesons is expected to be
roughly the same as that of ordinary mesons. At least
it’s not suppressed in the large Nc limit. In the same
limit, hybrid mesons and ordinary mesons mix freely if
they carry the same quantum numbers. Hence, the iden-
tification of hybrid mesons is very difficult unless they
have exotic quantum numbers. That’s why so many ef-
forts have been devoted to the search of the 1−+ hybrid
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meson.

B. Flux tube model

The flux model is obtained intuitively in the strong
coupling limit of lattice QCD [3, 4]. In this picture a
meson is described as a pair of quark-antiquark linked
by a color flux tube. The quarks move adiabatically in
an effective potential generated by the flux tube dynam-
ics. The orbital angular momentum along the flux tube
is zero. The flux tube can also rotate along its axis.
When the flux tube is in its ground state, the excita-
tion of the quark-antiquark degree of freedom yields the
conventional meson spectrum.

The hybrid mesons are defined as excitations of the
color flux tube. The lowest-lying exotic hybrid meson is
predicted to be with the quantum number jPC = 1−+

and a mass around 1.9 GeV [4], which is quite consistent
with the prediction of the lattice QCD. The decay of a
meson is triggered by breaking the flux tube in the flux
tube model [3]. A quark-antiquark pair is assumed to
be created with spin Sqq̄ = 1 and, orbital angular mo-
mentum Lqq̄ = 1 and total angular momentum Jqq̄ = 0.
This process is called ” 3P0 pair creation”. By the con-
servation of spin, a state with spin S = 0 can not decay
into two S = 0 states [5]. The quark aniti-quark pair
inside the lowest-lying 1−+ hybrid are the spin singlet in
the flux tube model. Therefore it can not decay into a
pair of spin zero mesons, such as ππ,πη. Besides, when
a flux tube is broken into two flux tubes (two mesons),
since the relative coordinate of the two final flux tubes
(the line connects the centers of the two flux tubes) is
parallel to the original one (denoted as r), the two final
mesons cannot absorb the unit of string angular momen-
tum about the r axis [3, 5] via their relative orbital an-
gular momentum. Therefore the 1−+ hybrid (with one
excited phonon polarized along the flux tube) cannot de-
cay into two ground states, such as ππ,πη and πρ · · · .
The preferential decay modes are those with one excited
meson, such as b1π, f1π · · · . This selection rule can be
violated when the two final ground states have different
spatial wave functions (i.e. they have different spatial
size). One calculation shows that the partial width of
1−+ → ρπ can be large and compatible with π1(1600)
being a hybrid if the π shrinks to a point [6].

The original flux tube model (IKP model) was mod-
ified by introducing a new decay vertex. The vertex is
constructed by using the heavy quark expansion of the
Coulomb gauge QCD Hamiltonian to identify relevant
operator [7, 8]. This new model (PSS model) extends
the selection rule of IKP. PSS states that the decay am-
plitude of a hybrid meson vanishes when the daughter
mesons are identical. This means that not only are the
S+S-wave final states forbidden but also are the P+P-
wave final states. The preferred channels are S+P-wave
pairs. The prediction of the partial width of the 1−+

hybrid meson for each channel is also different as shown

b1π ρπ f1π η(1295)π K∗K

PSS(MeV) 24 9 5 2 0.8

IKP(MeV) 59 8 14 1 0.4

TABLE I: Decay widths of the 1−+ hybrid meson from the
two flux tube model.

in Table I [8], where the mass of the 1−+ hybrid is set
to be 1.6 GeV. It should be noticed that the width of
ρπ is bigger than that of f1π in PSS. An extensive study
of the decay patterns of the hybrid mesons with other
quantum numbers in the flux tube model are collected in
the appendix, which was taken Ref. [8].

C. QCD sum rules

The mass and decay width of the 1−+ hybrid meson
has been studied using QCD sum rules. Within this
framework, one considers a two-point correlator

Πµν(q2) = i

∫
d4x eiqx〈0|T{jµ(x), j+

ν (0)}|0〉 (1)

where jµ(x) = q̄(x)T aγνigGa
µνq(x) is the interpolating

current for the 1−+ isospin vector hybrid meson.
The spectral density ρv(s) = 1

π ImΠv(s) can be ex-
pressed in terms of the hybrid meson observables like its
mass etc:

1
π
ImΠv(s) =

∑

R

M6
Rf2

Rδ
(
s−M2

R

)
+ QCD continuum,

(2)
It can also be related to the correlator Πv(q2) at the scale
−q2 via the dispersion relation

Πv,s(q2) = (q2)n

∫ ∞

0

ds
ρv(s)

sn(s− q2)
+

n−1∑

k=0

ak(q2)k, (3)

where the ak are appropriate subtraction constants.
After invoking the Borel transformation to enhance the

lowest-lying resonance in the spectral density, we have
the QCD sum rules

Rk (τ, s0) =
∫ s0

ske−sτρv(s)ds ; k = 0, 1, 2, . . . (4)

where the quantity Rk represents the QCD prediction,
and s0 is the threshold parameter.

The sum rules for 1−+ hybrid meson were obtained
by various authors. The prediction for the hybrid mass
is sensitive to the threshold s0. The sum rule in the
leading order of αs expansion is unstable. When the
next to leading order correction is included, the sum rule
becomes more stable. It predicts the upper bound of 1−+

hybrid mass is 2.0 GeV [9].
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QCDSR Flux Tube Model PDG (π1(1600))

b1π(MeV) unstable 40± 20 seen

f1π(MeV) 100 10± 5 seen

ρπ(MeV) 40± 20 9 seen

K∗K (MeV) 8 0.6 no

η′π (MeV) 3 small seen

ηπ (MeV) 0.3 small no

TABLE II: Comparison of the decay widths of the 1−+ hybrid
meson from the flux tube model and QCD sum rule approach.

The decay widths of the 1−+ hybrid can be obtained
by considering the three-point correlator

Π(p, q) = i

∫
d4xd4y eipx+iqy〈0|T{jA(x)jB(y)jµ(0)}|0〉,

(5)
where jA(x) and jB(y) are operators which annihilate the
final states A and B respectively.

When A and B are two pseudoscalars, Π(p, q) = F1(p+
q)µ + F2(p − q)µ. Only F2 is relevant to the process
1−+ → AB and vanishes at the leading order [10]. At
the next leading order, it was estimated [11]: Γ(1−+ →
πη′) ∼ 3MeV, Γ(1−+ → πη) ∼ 0.3MeV, which was quite
consistent with the prediction from the flux tube model.

However, the channel πρ is not narrow from QCD sum
rules approach. By using the three-point function at the
symmetric point, the width of 1−+ → πρ was predicted
in the region 250-600MeV [11, 12]. Later, it was pointed
out that the calculation at the symmetric point receives
large contamination from the high resonances and con-
tinnuum contribution [13]. By using the light-cone QCD
sum rules and the double Borel transformation, the width
is reduced to be 40 ± 20MeV [13]. The similar channel
K∗K is suppressed by the kinematic space. The channel
f1π is very broad (∼ 100MeV) in QCD sum rules.

It is interesting to compare the prediction of the QCD
sum rules with that of the flux tube model, although the
bases of these two approaches are contradictory. The first
one is based on the αs expansion while the second one is
based on the strong coupling expansion. From Table II
, the decay patterns from these two approaches are very
similar although the partial decay width for each channel
is quite different:

Γ(f1π) > Γ(ρπ) > Γ(K∗K) > Γ(η′π) > Γ(ηπ). (6)

D. Comments

It’s important to note that the gluon inside the hy-
brid meson can easily split into a pair of qq̄. Therefore
tetraquarks can always have the same quantum numbers
as the hybrid mesons, including the exotic ones. Dis-
covery of hadron candidates with JPC = 1−+ does not
ensure it’s an exotic hybrid meson. One has to exclude
the tetraquark possibility based on its mass, decay width

and decay pattern etc. This argument holds for π1(1400)
and π1(1600).

The flux tube model predicts hybrid mesons prefer de-
caying into a pair of mesons with L=1 and L=0. Heavy
hybrid mesons tend to decay into one P-wave heavy me-
son and one pseudoscalar meson according to a light-cone
QCD sum rule calculation [14]. A lattice QCD simula-
tion suggests the string breaking mechanism may play an
important role for the decays of the hybrid heavy quarko-
nium [15]. When the string between the heavy quark and
anti-quark breaks, new light mesons are created. In other
words, the preferred final states are one heavy quarko-
nium plus light mesons. However, readers should be very
cautious of these so-called ”selection rules”. None of
them has been tested by experiments because none of
the 1−+ hybrid candidates has been established unam-
biguously.

III. HUNTING FOR HYBRID MESONS AT
BESIII/BEPCII

Hybrid mesons are color-singlet mixture of constituent
quarks and gluons, such as qq̄g bound states. The evi-
dence of the existence of the hybrid mesons is also a direct
proof of the existence of the gluonic degree of freedom and
the validity of QCD. The conventional wisdom is that it
would be more fruitful to search for the low lying hybrid
mesons with exotic quantum numbers than to search for
glueballs. Hybrids have the additional attraction that,
unlike glueballs, they span complete flavour nonets and
hence provide many possibilities for experimental detec-
tion. In addition, the lightest hybrid multiplet includes
at least one JPC exotics.

In searching for hybrids, there are two ways to distin-
guish them from conventional states. One approach is
to look for an access of observed states over the num-
ber predicted by the quark model. The drawback to this
method is that it depends on a good understanding of
hadron spectroscopy in a mass region that is still rather
murky. At present, the phenomenological models have
not been tested to the extent experimentally so that a
given state can be reliably ruled out as a conventional
meson. The situation is further muddied by expected
mixing between conventional qq̄ states and hybrids with
the same JPC quantum numbers. The other approach is
to search for the states with quantum numbers that can-
not be accommodated in the quark model. The discovery
of exotic quantum numbers would be definite evidence of
something new.

Who did the theoretical estimate? From the
theoretical estimate, we know that Γ(J/ψ → MH) >
Γ(J/ψ → MM ′) > Γ(J/ψ → MG), where M stands
for ordinary a qq̄ meson, G stands for a glueball and H
stands for a hybrid. I.e., the J/ψ hadronic decay to hy-
brid states will have relatively large branching ratios and
is an ideal place to study hybrid states and to search for
exotic states.
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FIG. 1: The invariant mass spectrum of ηπ0 in J/ψ → ρηπ0.

Some previous experiments have searched for the 1−+

hybrid state π1(1400). Table III shows the list of the
experiments searching for 1−+ resonances in ηπ final
states. All the experiments listed in Table III observed
a clear forward-backward asymmetry and all of them ex-
cept NICE suggested or claimed the evidence of an exotic
JPC = 1−+ resonance. Of them, VES and E852 gave
consistent results. From Crystal Barrels results on p̄d →
ηπ−π0p, the Dalitz plot is dominated by ρ− → π−π0 and
there is a clear ηπ P-wave which interferes with it. The fit
to the Dalitz plot is improved when π1(1400) is included
and the mass and width of π1(1400) are quite consistent
with those from E852 experiment. E852 also found the
evidence of another 1−+ exotic π1(1600), decaying to ρπ
in π−p → π−π+π−p reaction, with the mass and width
being 1593± 8 MeV/c2 and 168± 20 MeV/c2. Tentative
evidence was put forward by the VES collaboration in
η′π from π−N → π−η′N process. VES saw a broad but
resonant P+ wave near this mass. However the phase
motion is not distinctive.

At BESIII/BEPCII, the decay of J/ψ → ρηπ can be
studied to search for 1−+ exotic state. As an example,
6× 109J/ψ → ρηπ Monte Carlo events are generated to
pass through BESIII detector. In the simulation, the pos-
sible a2(1320), 1−+X(1390), a0(980) and 1−+X(2300), as
well as background are considered. A partial wave anal-
ysis (PWA) is performed to analyze this channel. Fig.
1 shows the invariant mass spectrum of ηπ. In Fig. 2 ,
the contribution of a2(1320) and the scan results of its
mass and width are plotted. The minimum of the scan
curve gives the mass or width of this resonance. The
1−+X(1390) component is shown in Fig. 3 . From this
Monte Carlo study, we know that the angular distribu-
tions of a2(1320) and 1−+X(1390) are very different due
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FIG. 2: The contribution of a2(1320) and the scan results of
its mass and width.

to their different spin-parities, even though the masses
are in the same region. Partial wave analysis is able to
separate components which have different spin-parities
but at the same mass, when the statistics is enough and
the resolution of the spectrum is good. With a large
statistics, it is also possible to measure the phase motion
of P-wave and so to give a more convincing evidence for
the existence of a resonance.

Some phenomenological models predict that the dom-
inant decay channels of exotic mesons are πb1(1235) and
πf1(1285). The dominant decay channel of b1 is ωπ and
the dominant decay channels of f1 are ηππ and 4π. So, it
seems that these exotic states should appear in the invari-
ant mass spectrum of 5π or η3π. If these exotic states are
produced through J/ψ → ρX, then we had to study the
following decay channels: J/ψ → ρX, X → πωπ, J/ψ →
ρX, X → 5π, J/ψ → ρX, X → η3π. In addition, we
can study iso-scalar exotic mesons through the following
channels: J/ψ → ωX,X → ππ1(1400), π1(1400) → ρπ,
... Since there are lots of neutral and charged tracks in
each channel, a large coverage of solid angle is necessary
to preserve a high event selection efficiency. Good energy
resolution for neutral and charged tracks is also required
to accurately measure the mass and width of these exotic
states.

IV. MULTIQUARKS

When N (N ≥ 4) quarks/antiquarks are confined
within a single MIT bag, a multiquark state is formed.
The color structure within a multiquark state is compli-
cated and not unique. It always has a component which
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TABLE III: Previous experiments searching for the 1−+ hy-
brid meson.

Exps. Lab. Reaction pbeam Year

(GeV/c)

NICE IHEP π−p → ηπ0n 40 1981

GAMS CERN π−p → ηπ0n 100 1988

BENKEI KEK π−p → ηπ−p 6.3 1993

VES IHEP π−N → ηπ−X 37 1993

E852 BNL π−p → ηπ−p 18 1997
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FIG. 3: The contribution of ρ(1390) and the scan results of
its mass and width.

is the product of two (or more) color-singlet hadrons.
Special mechanism is needed to prevent the multiquark
to fall apart easily and become extremely broad when it
lies above threshold.

There are several well-known multiquark candidates.
The first one is the H dibaryons suggested by Jaffe
decades ago [16]. The on-going doubly-strange hyper-
nuclei experiments have pushed its binding energy to be
less than several MeV. Its existence is very dubious now.
Jaffe also suggested that the low-lying scalar nonet are
also tetraquarks because of their low mass and special
mass pattern [17]. The third one is the fading Θ+ pen-
taquark. Interested readers may consult the review [18].
Dr S. Jin promised to finish the related BES part.
Waiting.

V. MOLECULAR STATES

Molecular states are bound states of two (or more)
color-singlet hadrons. In other words, there are two (or
more) MIT bags. Color-singlet hadrons are exchanged
between these bags to produce the attractive force. Very
often pions mediate the long-range interaction. There
have been speculations of f0(980) being a KK̄ molecule
since it’s only 10 MeV below KK̄ threshold [19]. Λ(1405)
is sometimes postulated as a KN molecule.
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TABLE IV: 2−+ Isovector Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

2−+ ρπ P 9 16 13 12 57

K∗K P 1 5 2 1 17

ρω P 0 0 0 0 20

f2(1270)π S 19 10 9 14

D .1 .2 .05 11

f1(1285)π D .1 .3 .06 Ø

f0(1370)π D .02 .08 .01 .6

b1(1235)π D Ø Ø Ø 20

a2(1320)η S – 7 – –

D – .01 – –

a1(1260)η D 0 .05 0 0

a0(1450)η D – 0 – –

K∗
2 (1430)K S – 11 – –

D – 0 – –

K1(1270)K D 0 .01 0 .02

K∗
0 (1430)K D – 0 – –

K1(1400)K D – 0 – –

ρ(1450)π P .8 12 3 2

K∗(1410)K P – 1 – –

Γ 30 63 27 59

TABLE V: 1−+ Isovector Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

1−+ ηπ P 0 .02 .02 .02 99

η
′
π P 0 .01 .01 0 30

ρπ P 9 16 13 12 57

K∗K P 1 5 2 1 17

ρω P 0 0 0 0 13

f2(1270)π D .2 .5 .1 Ø

f1(1285)π S 18 10 9 14

D .06 .2 .04 7

b1(1235)π S 78 40 37 51

D 2 3 1 11

a2(1320)η D – .02 – –

a1(1260)η S 5 7 3 8

D 0 .01 0 .01

K∗
2 (1430)K D – 0 – –

K1(1270)K S 4 7 2 6

D 0 .2 0 .04

K1(1400)K S – 33 – –

D – 0 – –

π(1300)η P – 5 – –

ηu(1295)π P 3 27 11 8

K(1460)K P – .8 – –

ρ(1450)π P .8 12 3 2

K∗(1410)K P – 1 – –

Γ 121 168 81 117
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TABLE VI: 1−− Isovector Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

1−− ωπ P 9 16 13 12 57

ρη P 4 9 6 4 30

ρη
′

P .1 1 .2 .1 1

K∗K P 3 9 5 3 34

a2(1320)π D .5 2 .3 16

a1(1260)π S 78 41 37 51

D .4 .8 .2 11

h1(1170)π S Ø

D Ø

b1(1235)η S Ø

D Ø

K∗
2 (1430)K D – 0 – –

K1(1270)K S 6 12 4 11

D 0 .01 0 0

K1(1400)K S – 17 – –

D – 0 – –

ω(1420)π P 1 14 4 4

K∗(1410)K P – 3 – –

Γ 103 121 70 112

TABLE VII: 2+− Isovector Hybrid Decay Modes from Ref.
[8].

alt high mass standard IKP reduced

2+− ωπ D .5 1 1 1 4

ρη D .1 .6 .2 .1 1

ρη
′

D 0 .02 0 0 0

K∗K D .04 .2 .08 .04 .6

a2(1320)π P .7 .9 .4 130

F 0 .02 0 .2

a1(1260)π P 3 4 2 45

F .01 .02 0 .3

h1(1170)π P 2 2 1 69

F .01 .03 .01 .5

b1(1235)η P .02 .5 .01 .8

F 0 0 0 0

K∗
2 (1430)K P – .04 – –

F – 0 – –

K1(1270)K P 0 .03 0 .6

F 0 0 0 0

K1(1400)K P – .3 – –

F – 0 – –

π(1300)π D .08 1 .2 .2

ω(1420)π D .02 .4 .04 .04

K∗(1410)K D – .01 – –

Γ 7 11 5 248
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TABLE VIII: 0−+ Isovector Hybrid Decay Modes from Ref.
[8].

alt high mass standard IKP reduced

0−+ ρπ P 37 63 51 47 230

K∗K P 5 18 10 5 69

ρω P Ø

f2(1270)π D 1 3 .6 8

f0(1370)π S 62 40 30 62

a2(1320)η D – .1 – –

a0(1450)η S – 4 – –

K∗
2 (1430)K D – .02 – –

K∗
0 (1430)K S – 44 – –

ρ(1450)π P 3 47 10 10

K∗(1410)K P – 5 – –

Γ 108 224 102 132

TABLE IX: 1+− Isovector Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

1+− ωπ S 23 19 26 38 118

D .3 .8 .4 .3 2

ρη S 15 21 25 22 118

D .07 .3 .1 .06 .6

ρη
′

S 3 8 5 4 25

D 0 .01 0 0 0

K∗K S 27 52 47 36 339

D .02 .1 .04 .02 .3

a2(1320)π P 19 26 10 49

F 0 .02 0 .1

a1(1260)π P 9 10 5 29

a0(1450)π P 3 6 1 26

h1(1170)π P Ø Ø Ø 95

b1(1235)η P Ø Ø Ø 1

K∗
2 (1430)K P – 1 – –

F – 0 – –

K1(1270)K P .04 .6 .02 5

K∗
0 (1430)K P – .4 – –

K1(1400)K P – .4 – –

ω(1420)π S 16 82 58 79

D .01 .2 .02 .02

K∗(1410)K S – 110 – –

D – .01 – –

Γ 115 338 177 384
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TABLE X: 0+− Isovector Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

0+− a1(1260)π P Ø Ø Ø 309

h1(1170)π P 47 45 24 37

b1(1235)η P .6 12 .4 .3

K1(1270)K P .7 10 .4 7

K1(1400)K P – 1 – –

π(1300)π S 60 246 222 312

K(1460)K S – 115 – –

Γ 108 429 247 665

TABLE XI: 1++ Isovector Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

1++ ρπ S 23 19 26 38 116

D 1 3 2 1 8

K∗K S 14 26 24 18 170

D .04 .3 .09 .04 .6

ρω S 0 0 0 0 47

D 0 0 0 0 .03

f2(1270)π P 4 5 2 75

F .01 .03 0 .3

f1(1285)π P 7 9 4 62

f0(1370)π P Ø Ø Ø 4

b1(1235)π P Ø Ø Ø

a2(1320)η P – .9 – –

F – 0 – –

a1(1260)η P .2 3 .09 1

a0(1450)η P – Ø – –

K∗
2 (1430)K P – .4 – –

F – 0 – –

K1(1270)K P .07 1 .05 1

K∗
0 (1430)K P – 0 – –

K1(1400)K P – .7 – –

ρ(1450)π S 14 80 50 66

D .02 .6 .05 .04

K∗(1410)K S – 55 – –

D – .01 – –

Γ 63 204 108 269
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TABLE XII: Isoscalar Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

2−+ K∗K P 1 5 2 1 17

a2(1320)π S 52 31 25 45

D .2 .6 .1 22

a1(1260)π D .5 1 .3 Ø

a0(1450)π D .02 .1 .01 .6

f2(1270)η S – 8 – –

D – .02 – –

f1(1285)η D – .02 – –

f0(1370)η D – 0 – –

K∗
2 (1430)K S – 11 – –

D – 0 – –

G – 0 – –

K1(1270)K D 0 .01 0 0

K∗
0 (1430)K D – 0 – –

K1(1400)K D – 0 – –

K∗(1410)K P – 1 – –

Γ 54 58 27 69

1−+ η
′
η P 0 0 0 0 10

K∗K P 1 5 2 1 17

a2(1320)π D .4 1 .2 Ø

a1(1260)π S 59 30 28 38

D .3 .6 .2 34

f2(1270)η D – .05 – –

f1(1285)η S – 8 – –

D – .01 – –

K∗
2 (1430)K D – 0 – –

K1(1270)K S 4 7 2 7

D 0 .2 0 0

K1(1400)K S – 33 – –

D – 0 – –

π(1300)π P 8 65 27 27

ηu(1295)η P – 6 – –

K(1460)K P – .8 – –

K∗(1410)K P – 1 – –

Γ 73 158 59 107

0−+ K∗K P 5 18 10 5 69

a2(1320)π D 2 6 1 16

a0(1450)π S 145 114 70 175

f2(1270)η D – .2 – –

f0(1370)η S – 23 – –

K∗
2 (1430)K D – .02 – –

K∗
0 (1430)K S – 44 – –

K∗(1410)K P 5

Γ 152 210 81 196

1−− ρπ P 28 47 38 35 172

ωη P 3 9 6 4 29

ωη
′

P .1 1 .2 .3 .8

K∗K P 3 9 5 3 35

b1(1235)π S Ø Ø Ø

D Ø

h1(1170)η S Ø

K∗
2 (1430)K D – 0 – –

K1(1270)K S 6 12 4 11

D 0 .01 0 0

K1(1400)K S – 17 – –

D – 0 – –

ρ(1450)π P 2 35 8 7

ω(1420)η P – .6 – –

K∗(1410)K P – 3 – –

Γ 42 134 61 60

2+− ρπ D 1 4 2 2 11

ωη D .1 .5 .2 .1 1

ωη
′

D 0 .03 0 0 0

K∗K D .04 .2 .08 .04 .6

b1(1235)π P 4 5 2 164

F .02 .07 .01 .8

h1(1170)η P .2 .7 .1 6

K∗
2 (1430)K P – .04 – –

F – 0 – –

K1(1270)K P 0 .03 0 .6

F 0 0 0 0

K1(1400)K P – .3 – –

F – 0 – –

ρ(1450)π D .02 .8 .06 .05

ω(1420)η D – 0 – –

K∗(1410)K D – .01 – –

Γ 5 12 4 166

1+− ρπ S 70 57 77 114 350

D .8 2 1 1 6

ωη S 15 22 25 22 119

D .07 .3 .1 .06 .6

ωη
′

S 4 8 5 15 24

D 0 .02 0 0 0

K∗K S 27 52 47 36 339

D .02 .1 .04 .02 .3

b1(1235)π P Ø Ø Ø 231

h1(1170)η P Ø Ø Ø 9

K∗
2 (1430)K P – 1 – –

F – 0 – –

K1(1270)K P .04 .6 .02 5

K∗
0 (1430)K P – .4 – –

K1(1400)K P – .4 – –

ρ(1450)π S 42 240 150 199

D .01 .4 .04 .03

ω(1420)η S – 38 – –

D – 0 – –

K∗(1410)K S – 110 – –

D – .01 – –

Γ 158 529 305 632

0+− b1(1235)π P 110 119 56 85

h1(1170)η P 4 17 3 2

K1(1270)K P .7 10 .4 7

K1(1400)K P – 1 – –

K(1460)K S – 115 – –

Γ 115 262 59 94

1++ K∗K S 17 26 24 18 170

D .04 .3 .09 .04 .6

a2(1320)π P 10 14 5 179

F .01 .06 .01 .4

a1(1260)π P 28 30 14 232

a0(1450)π P Ø Ø Ø 6

f2(1270)η P – 1 – –

F – 0 – –

f1(1285)η P – 2 – –

f0(1370)η P Ø Ø Ø –

K∗
2 (1430)K P – .4 – –

F – 0 – –

K1(1270)K P .07 1 .05 1

K∗
0 (1430)K P – 0 – –

K1(1400)K P – .7 – –

K∗(1410)K S – 55 – –

D – .01 – –

Γ 55 130 43 436
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TABLE XIII: ss̄ Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

2−+ K∗K P 6 13 11 8 82

K∗
2 (1430)K S 28 29 21 44

D .03 .5 .02 1

K1(1270)K D .2 .5 .1 10

K∗
0 (1430)K D .02 .3 .01 .2

K1(1400)K D .06 .5 .03 .6

f
′
2(1525)η S – 20 – –

D – .2 – –

f1(1510)η D – .03 – –

f0(1370)η D .01 .08 0 .1

K∗(1410)K P 2 27 6 5

Γ 36 91 38 69

1−+ η
′
η P 0 0 0 0 44

K∗K P 6 13 11 8 82

K∗
2 (1430)K D .07 1 .04 Ø

K1(1270)K S 14 10 11 14

D 3 8 2 21

K1(1400)K D 83 76 61 121

D .03 .2 .02 .4

f
′
2(1525)η D – .04 – –

f1(1510)η S – 21 – –

D – .02 – –

K(1460)K P 1 45 4 3

ηs(1490)η P – 15 – –

K∗(1410)K P 2 27 6 5

Γ 109 216 95 172

0−+ K∗K P 26 52 46 33 330

K∗
2 (1430)K D .4 6 .2 1

K∗
0 (1430)K S 113 117 83 174

f
′
2(1525)η D – .2 – –

f0(1370)η S 72 105 64 109

K∗(1410)K P 7 110 22 18

Γ 218 390 215 335

1−− K∗K P 13 26 23 16 165

φη P 2 19 11 3 89

φη
′

P .01 2 .1 .02 .5

K∗
2 (1430)K D .1 2 .07 2

K1(1270)K S 23 16 18 24

D .2 .6 .1 2

K1(1400)K S 43 40 32 63

D .1 .6 .04 .7

h1(1380)η S Ø

D Ø

D .07 .6 .04 .3

K∗(1410)K P 3 55 11 9

Γ 84 155 95 120

2+− K∗K D 1 3 2 1 13

φη D .06 .8 .3 .08 2

φη
′

D 0 0 0 0 0

K∗
2 (1430)K P .3 1 .2 32

F 0 .03 0 .01

K1(1270)K P .2 .3 .1 17

F .04 .2 .02 .6

K1(1400)K P 3 8 2 28

F 0 0 0 0

h1(1380)η P .3 2 .2 9

F 0 0 0 0

K∗(1410)K D .04 2 .1 .08

Γ 5 18 5 79

1+− K∗K S 20 19 34 42 247

D .6 2 1 .6 7

φη S 11 63 66 28 523

D .03 .5 .2 .04 1

φη
′

S 2 19 8 3 61

D 0 .02 0 0 0

K∗
2 (1430)K P 8 35 5 10

F 0 .02 0 .01

K1(1270)K P 4 5 2 122

K∗
0 (1430)K P 3 14 2 18

K1(1400)K P 3 8 2 4

h1(1380)η P Ø Ø Ø 14

K∗(1410)K S 39 206 181 201

D .02 1 .06 .04

Γ 91 373 301 443

0+− K1(1270)K P 66 95 43 165

K1(1400)K P 10 30 6 36

h1(1380)η P 8 42 5 4

K(1460)K S 46 323 205 221

Γ 130 490 259 426

1++ K∗K S 10 9 17 21 123

D 1 4 2 1 15

K∗
2 (1430)K P 3 13 2 27

F 0 .05 0 .01

K1(1270)K P 7 11 5 37

K∗
0 (1430)K P Ø Ø Ø 2

K1(1400)K P 6 16 3 29

f
′
2(1525)η P – 2 – –

F – 0 – –

f1(1510)η P – 4 – –

f0(1370)η P Ø Ø Ø 2

K∗(1410)K S 19 103 90 100

D .05 2 .1 .08

Γ 46 164 119 219
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TABLE XIV: cc̄ Hybrid Decay Modes from Ref. [8].

alt high mass standard IKP reduced

2−+ D∗D P .5 .1 .8 4 19

D∗∗(2+)D S – 9 – –

D – .2 – –

D∗∗(1+
L)D D – .2 – –

D∗∗(0+)D D – .2 – –

D∗∗(1+
H)D D – .2 – –

Γ .5 10 .8 4

1−+ D∗D P .5 .1 .8 4 19

D∗∗(2+)D D – .5 – –

D∗∗(1+
L)D S – 1.2 – –

D – 2.5 – –

D∗∗(1+
H)D S – 25 – –

D – 0 – –

Γ .5 29 .8 4

0−+ D∗D P 2 .3 3 16 76

D∗∗(2+)D D – 2.5 – –

D∗∗(0+)D S – 25 – –

Γ 2 28 3 16

1−− D∗D P 1 .2 1.5 8 38

D∗∗(2+)D D – 1 – –

D∗∗(1+
L)D S – 7 – –

D – .3 – –

D∗∗(1+
H)D S – 10 – –

D – .2 – –

Γ 1 19 1.5 8

2+− D∗D D .2 .2 .3 1 7

D∗∗(2+)D P – .5 – –

F – .02 – –

D∗∗(1+
L)D P – 0 – –

F – 0 – –

D∗∗(1+
H)D P – 3 – –

F – 0 – –

Γ .2 4 .3 1

1+− D∗D S .3 .1 .5 8 12

D .1 .1 .1 .5 4

D∗∗(2+)D P – 13 – –

F – .01 – –

D∗∗(1+
L)D P – 2 – –

D∗∗(0+)D P – 8 – –

D∗∗(1+
H)D P – 2.5 – –

Γ .4 26 .6 8.5

0+− D∗∗(1+
L)D P – 25 – –

D∗∗(1+
H)D P – 15 – –

Γ – 40 – –

1++ D∗D S .2 .1 .3 1 6

D .2 .2 .3 .3 8

D∗∗(2+)D P – 5 – –

F – .03 – –

D∗∗(1+
L)D P – 5 – –

D∗∗(0+)D P – Ø – –

D∗∗(1+
H)D P – 5 – –

Γ .4 15 .6 1.3


