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Appendix A

Statistics in HEP data analysis!

This Appendix introduces an overview of two aspects of statistical methods used in High
Energy Physics (HEP)- parameter estimation and hypothesis testing. For the detail, it is
recommended to refer to the relevant textbooks [1, 2, 3] and literatures [4], and references
quoted in this Appendix. In an experiment of HEP, an observable x usually is a random
variable, its pdf is expressed as f(z,f) with parameter §, what the experiment obtained
is an sample of z:7 = (z1,...,2,)7. The task of the statistical inference is based on
the sample of data to determine the value and error, or a confidence interval at given
confidence level for the parameter 6, or infer observable’s pdf f(z,6).

A.1 Parameter estimation

Parameter 6 is estimated with a function of sample of observed data: J(z1, ..., z,), which
is called an estimator of #. The sample of observed data @ = (21, ..., z,)7 is also a random
variable, the value of the estimator to a specific measurement of (x1, ..., x,)7 is called an
estimate. Throughout this Appendix, we will use same donation to denote estimate and
estimator. An good estimator should have properties of consistency, unbiasedness and
high efficiency.

The consistency means when the size of the data sample (z1, ..., ;) goes to infinity,
the estimator @ converges to the true value of parameter 6.

The bias of an estimator is defined as the difference of the expectation of the estimator

N

and the true value #: F(f) = 6 + b(f). The unbiasedness is a property of an estimator
in finite sample, namely, it is required F(f) = 6. If it has to be estimated with a biased
estimator, then the bias b of the estimator should be known or can be obtained by some
way.

The efficiency is a measure of the variance of an estimator. Under the regularity
conditions, namely, if the range of Z is independent of # and the first and second derivatives
of the sample’s joint pdf - Likelihood function L(Z|0) = [I;-, f(x;,0) - with respect to
f exist, there exists a lower bound on the variance of the estimates derived from an
estimator, which is called the minimum variance bound MVB, given by Cramer-Rao
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inequality:
e
MVB = S, (A1)
where () is the Fisher information:
., 0lnL 4 r,0InL , L d*InL. 0%lnL .
160) = Bl = [(S50)? - Ldz = Bl-=27 = [(-5557) L. (A2)

The efficiency of an estimator 0 is defined as e(d) = MV B/V(0). Apparently, we hope
the efficiency of the used estimator is close or equal to 1.

The mean-square error (MSE) of an estimator is a convenient quantity which combine
the uncertainties in an estimator due to bias and variance:

MSE = E[(6 — 0)2] = V(0) + b (A.3)

A.1.1 Estimators for mean and variance

Suppose we are interested in the expectation p of an observable  (random variable) and its
variance, o2. We have a set of n independent measurements z;, which have same unknown
expectation p and common unknown variance o?. This corresponds to, for instance, a
set of n measurements for an observable z in an experiment. Then their consistent and
unbiased estimate are the sample mean Z and sample variance S, respectively:

1 n
ﬂza_U:—in, (A4)
nz:l
g 2 1 - —\2
o?2=5 —n_lz(xi—x) (A.5)

The variance of ji is 02 /n, while the variance of o2 is

A 1 n—3
V(o?) = ﬁ(m4— —

o), (A.6)

where my is the 4th central moment of x.
For the known p, the consistent, unbiased estimator of variance is

o? = - Z(l“z — ) (A7)

which gives a somewhat better estimator of 2 compared with Eq. A.5 for unknown p case.
For the binomial, Poisson and Gaussian variables z;, which are often used in data analysis,
the sample mean is an efficient estimator for u; For the normal variables, Eq. A.7 is an
efficient estimator of o2 in the case of known u, and sample variance S? is an asymptotic
efficient estimator for o2. R

For the Gaussian distributed z;, Eq. A.6 becomes V(02) = 20*/(n — 1) for any n > 2,
and for large n the standard deviation of & (the ”error of the error”) is o/v/2n.
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If the z; have different, known variance o7, which corresponds to the situation that
different experiments measure the same quantity with different uncertainties. Assume z;
can be considered as a measurement of the Gaussian distributed variable N(u,c?), then
the unbiased estimator of the physics quantity u is a weighted average

where w; = 1/0?, w = ¥, w;, and the standard deviation of i is 1/y/w.

A.1.2 The method of maximum likelihood (ML)

From the statistical point of view, the method of maximum likelihood (ML) is the most
important general method of estimation, as the ML estimator of parameter has many
good properties.

The ML estimators for parameter and its error

Suppose z;,7 = 1,...,n are the n independent measurements of a random variable x with
the pdf f(x, 0_), where § = (0, ...,0;)T are k parameters to be determined, then the ML

—

estimators 0(z1, ..., z,) are the values of § that maximize the likelihood function

=T

L@@ = f[lfm; d). (4.9)

Since both [nL and L are maximized for the same parameters values g and it is usu-
ally easier to work with InL, therefore, the ML estimators can be found by solving the

likelihood equations

OlnL
=  =1,.... k. Al
20, 0, 7 sy k (A.10)

The ML estimator is invariant under change of parameter, namely, under an one-to-one

~
A= =
=

change of parameters from § to 77, the ML estimators § transform to 7(0) : 7(6) = 7(6).
Moreover, the ML estimators are asymptotic unbiased. When the likelihood function
satisfies the regularity conditions, the ML estimators are consistent estimators. If there
exist the efficient estimators for parameters or their functions, then the efficient estimators
must be the ML estimators, and the likelihood equations give the unique solutions; while
if the efficient estimators do not exist, the ML estimators give possibly minimum variance

for 6. For large size n and the likelihood function satisfies the regularity conditions, 0:
asymptotically distributed as a normal variable with the mean being the true values 6
and the variances reach the MVB.

The ML estimators give only the values of the parameters. To know the errors of
the parameters, one has to know the variances of parameters. The expression of the
covariance between parameters éz and 0}- for any size of sample n is

V@) = [(0:=0)(6 - 0)L@BdT, i =1,k (A1)
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The calculation of this integral is sometimes troublesome, however, in general, it can be
calculated with numerical method in any case.
For the case that 6 is an efficient estimator of single parameter, following equation is
applicable for any size of sample n:
~ o (1+ 2y
V(e) = (_62lnL

; (A.12)
90?2 )ezé

In particular, if 0 is an unbiased efficient estimator

1

( 82%IinL

V() = o
002 /6=0

(A.13)

For multi-parameters and large n, if there exists a set of k£ jointly sufficient statistics
t1, ..., ty for the k parameters 61, ..., 0, the inverse of the covariance matrix V;; = cov(6;, 6,)
for a set of ML estimators can be calculated by

2, 02%InL
—1 _(_
Vi (0) = 00,00,

)i i =1k (A.14)

Besides, for large n and the likelihood function satisfying the regularity conditions, the

ML estimators 6 asymptotically distributed as a multi-dimensional normal variable, then
one has

= —

_OAnL(| ))0;5: / (_PInL(@d)

1 § =F
Vi (0) = E(=—54 5. 96,00,

)js- LdZ, i, j=1,..k (A.15)

or, one can use the pdf of the random variable z to calculate the covariance matrix:

% 1
Vi;i(0) = n/?(g—é:)(g—gj)dx, i,j=1,...,k. (A.16)
Wherein, the last equation uses only the pdf of the random variable x and does not
need the measured data sample, which is particularly useful in the design stage of an
experiment.

If the observable x is a normal random variable, or the size of sample n is sufficiently
large, then the likelihood function is an asymptotically normal distribution and InL is
a parabolic function, a numerically equivalent way of determining s-standard-deviation
errors is from the contour given by the 0’ such that

InL(0") = InLyaz — 5 (A.17)
where L,,,, is the value of InL at the solution point. The extreme limits of this contour
on the 6; axis give an s-standard-deviation likelihood interval for #;. In the case InL is not
a parabolic function, the approximate 1-standard-deviation likelihood interval can also be
estimated by this equation, and it will give an asymmetric positive and negative errors
for each parameter, namely, o7 (6;) # o (6;),i =1, ..., k.
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The ML method for binned data

In the case that the size n of data sample ¥ = (z1,...,1,)7 is sufficiently large, the
measurements often are expressed as a histogram binned data. For constant n, the like-
lihood function (joint pdf) of n;(i = 1,...,m) measurement values appearing in i-th bin is
expressed as a multinomial distribution

L(ni, ..., nm|0) —n'H 'pz. (A.18)

The probability of one measurement value appearing in i-th bin is calculated with pdf

f(lf)
pi=pll)= [ Jalf)de. (A19)

Then the likelihood equation becomes

8lnL _
( 00 g" 0“: ; [ZZ1 nzlnpz =0, 1=1,...,m, (A.20)

Solving this set of equations gives the ML estimators g,

The extended ML method

If the size n of data sample is not a constant but a Poisson random variable with the
expectation v, then the likelihood function is the product of usual likelihood function and
the Poisson probability of observing n events

L(V7 5) = I:L_T:e—u ﬁ f(xza 5)7 (A21)
: i=1

which is called the extended likelihood function [5]. Then the solutions of the likelihood
equations

=

omL(v,6) _ o i_1 % (A.22)

=0 (A.23)

give the ML estimators g
In the case that v is irrelevant to 0 alnL ”53 = 0 gives = n, the solutions of Eq.
g

A.22 give the same 9 as those from Egs. A.9, A.l(]. If v is a function of 5, the likelihood
function becomes (dropping terms irrelevant to 6)

= = = =

InL(0) = —v(0) + Zln[u( ) - f(xi,0)]. (A.24)
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The variances of the ML estimators @ derived from the extended likelihood function are
usually smaller than those from usual likelihood function because the former uses the
information from both n and 7.

For the binned data, the extended likelihood function is

= ol
L(ny,...,ng|0) = 1:[1 n—Z'VZ e, (A.25)
where the expectation of n;, v;, is
v; = 1// f(z|0)dz, v= 7T (A.26)
Az i=1
In the case that v is irrelevant to 5, the likelihood equations become
5lnL .
o0, 67 = 30, 0 zZ:lnzlnl/, =0, j=1..m, (A.27)

—

which has the same form of Eq. A.20 with p;(d) replaced by v;(6), and # = n. If v is a
function of #, then the likelihood equations are

olnL
80] |9“:é": 69 [anlm/z ]0_.:5,

J =1

=0, j=1,..,m. (A.28)

The variances of the ML estimators § derived from these equations are usually smaller
than those from usual likelihood function because the random property of n has been
taken into account here.

Combining measurements with ML method

Suppose the observations in two independent experiments are ¥ = (xq, ... )T and ¢ =
(Y1, s Ym) T, and their pdf f,(x, 0) and f,(y, ) depend on same parameters 9 which are
the quantities to be measured in the experiments. The joint likelihood function of these
two experiments are

L(Z,7;0) = L(%;0) - L(7;0) = Hfz (:,6) H £y (i, ). (A.29)

Solving the likelihood equations of this likelihood function with respect to parameters ]

and obtaining the ML estimator ) gives the combined measurement of these two experi-
ments for parameters 0.

In the case fy(x,0) and f,(y,0) are Gaussians and the parameter 6 is the mean of
Gaussians, the combined estimator of the parameter and its variance have simple forms:

é:(g ;)/(02 p)a (A.30)
V) =1/(o5 + ) (A31)
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where 6, and o, are the measured value of parameter # and its error from experiment
x, respectively. Above expressions can be directly extended to the situation of multi-
experiments.

If the likelihood function is unknown, and only the results of parameter # and its errors,
0;,0; ,0; , are reported in each experiment, the combined results for parameter 6 and its
errors of multi-experiments can be deduced with the method suggested by R.Barlow [6].
The essence of the method is using the measured values 6;, o;", 0;” to construct an approx-
imate parametric likelihood function for each experiment. The variable width Gaussians
are concluded as the best approximation for our purpose. The likelihood function can be

approximated as
(6 — 6;)?
InL(6;|0) = ———++—, A.32
6.10) = 55 (4.32)
where the true value of parameter is #, and the measured value is 6; in i-th experiment.
For the linear o parametrization, we have

Vi) = [0:(0))?,  0:(0) = 0i + 0l(0 — 6;), (A.33)
200 o
o; = +O-’L O-’L —, 0'; = 70-:» 0-17 y (A34)
o; +o0; o; +o0;
where o, 0; are the measured positive and negative errors of 6; in i-th experiment. For

the linear V parametrization,

Vi(0) = Vi + V(0 — 6), (A.35)
Vi=oto;, V!=o-0;. (A.36)

% %

Thus, the joint likelihood function of multi-experiments for parameter 6 is approximately
1 (6 — 6;)?

InL(f) =—=) —*. A.37

nL0) =5 ¥ 5 (A.37)

The best estimate of 6, é, is determined by the maximum of above likelihood function.
For the linear ¢ form, the solution is

wi = % . (A.39)
[0 + 0} (0 — 6;)]3
For the linear V form, the solution is
!

Vi+ V70— 6,2

Two sets of equations shown above are non-linear for 0 and the solution must be found by
iteration. The AlnL=0.5 points of the likelihood function in Eq. A.37 are used to deter-
mine the positive and negative errors for é, which also need to be determined numerically.
The program of combining results from multi-experiments using parametrization likeli-
hood function has been coded, and obtainable under http://www.slac.stanford.edu/ bar-
low /statistics.html.
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A.1.3 The method of least squares(LS)
The LS estimator for parameter and its error

Suppose n observations ¥ = (yi,...,y,)" are measured at n points T = (zy,...,,)", the
covariance matrix of observations 7 is expressed as V;; = cov(y;,y;), and the true values
of 7, 77, are described by model n; = f(mi,g) 4 =1,...,n , where 0 = (A01, cey 0p)T are the
parameters to be determined. The least squares (LS) estimators of 5, 5, can be found by
minimizing the LS function Q2(6) with respect to 6:

= =

Q*(0) = (7 — 7O)"VH(F — 7(0)) = Bizy X (s — m:) Vg (5 — my)- (A.42)

In the case of y;,7 = 1,...,n being n independent measurements, the LS function has
simple form

C_n.)2
@) = v, W

(A.43)

where o; is the error of y;. An usual case is y; is a Poisson variable, then o2 can be

approximated by y; or its predicted value n;. If y;,42 = 1, ..., n are n independent Gaussians,
y; ~ N(n;,0?), the likelihood function of § is L(f) o exp[—1 ?:1(%;1’7”‘)2] In this case

g
maximizing L(#) with respect to parameters 6 is equivalent to minimizing the LS function

Q? (5) = E?Zl(y’;%)z, namely, the estimators of ML and LS methods for g are identical.

For the linear LS model, i.e. f(z;,H) is the linear function of 6
f(xi, 5) = E?Zlaiﬂj, 1=1,...,n, k<n, (A44)

where a;; equals 2/~ or is the (j — 1)-th Legendre polynomial of z;, minimizing the
LS function Q2(§) simplified to solve a set of k linear equations. Define a;; being the
elements of a n X k matrix A, minimizing the LS function Q2(6) gives the LS estimator
of parameters 0

0= ATV 1A) ATV 17, (A.45)
the covariance matrix of 6 is
V(0) = (ATVtA)T (A.46)
or equivalently

Sy - 1P

J

= 37 1 Wiy (V" i, 4,5 =1, k. (A.47)

If y;,0 = 1,...,n are independent each other, the non-diagonal elements equal to zeros,
then the above equation is simplified to

~
-

(V_l( ))2] = E"mzlamiamj/afn, Z,] = 1, ceey k/' (A48)

The linear LS estimators provide the exact solutions for parameters 6, and they are
unique and unbiased, and have minimum variances.
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Expanding Q? (5) about 5, one finds that the contour in parameter space defined by

Q0) = Q0) + 5" = Qin +5° (A.49)
has tangent planes located at plus or minus s- standard deviation from the LS estimates

6.
For the linear LS model, if the observations 7 are multi-normal variables, the minimum
of the LS function Q(6)

min(0) = S50 (i — 1) Vi ' (g5 — ) (A.50)
is a x? variable with degree of freedom of n — k. This means the Q2 obtained by
LS method is a quantitative measure of the consistency between the measured values ¥
and their fitted value ﬁ, i.e., the Q% represents the goodness of fit (see section A.3.1.,
goodness of fit tests).

For the non-linear LS model, i.e. f(z;, 5) is the non-linear function of 5, usually the

minimizing of the LS function Q2(§) is implemented via iteration procedure to obtain

an approximate solution of 0. The non-linear LS estimator is a biased estimator, its
variance does not reach MVB, and the exact distribution of Q2 is unknown. However,
if n is sufficiently large, the LS estimator is asymptotically unbiased, and its Q2. is
approximately a y? variable.

The LS method for binned data

For sufficiently large size n of data sample & = (z1,...,2,)7 and the measurements ex-
pressed as a histogram binned data, assuming the observed number of measurements in
1-th bin is n;, ¢ = 1, ..., m, and its corresponding expectation from assumed model is

50 =mp pl)= [ gl (A51)

where g(m\g) is the pdf of observable x and 0 are the parameters to be determined. The
normalization ¥, p; = 1 requires

—

Eiini = 5L, fi(0) = n. (A.52)
It can be proved for a given n, the LS function Q2(f) is of the form

2 2
27 m (M —np;) m (M — [i)

f)=x"—"—=3¥" —— A.53

Q ( ) =1 np; =1 fz ( )

The f; in the denominator can be approximated by n;. Minimizing this LS function
leads to the LS estimates for parameters #, which usually needs to be implemented by
numerical iteration procedure. The n; is a Poisson variable with the expectation np;, if n
is sufficiently large, n; can be approximated by a Gaussian, then (n; — f;)/+/fi or (n; —

=

fi)//ni is approximately a standard normal variable, therefore, the @2, (9) distributed
approximately as a x*(m — 1) variable, where the degree of freedom of m — 1 is due to

the existence of a constraint equation A.52.
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General LS estimation with constraints

Often in the estimation problem there exist a set of constraint equations between the true
values of observations 7;,7 = 1, ..., n. The typical example is in the kinematic analysis of a
particle reaction or decay, the momentum and energy conservation laws constitute a set of
restrictions relating the various momenta and angles for the particle combination defining
the kinematic hypothesis. Some of the quantities have been measured to a certain accuracy
(say, the momenta and angles of curved tracks), and some are completely unknown (the
variables for an unseen particle). The purpose of the LS estimation is to investigate
the kinematic hypothesis: for a successful minimization the constraint equations will
supply estimates for the unmeasured variables as well as ”improved measurements” for
the measured quantities.

Assume § = (yi,...,yn)" are the measured values with covariant matrix V (%), let
the true values of 7 be 77. In addition, we have a set of J unmeasurable variables £ =
(&1,...,&5)". The n measurable and J unmeasurable variables are related and have to
satisfy a set of K constraint equations

=

[ &) =0, k=1,.,K.

Accogding to the LS principle, we should adopt as the best estimates of the unknown 7
and & those values for which

Q) = (7 — 0"V ()G — ) = minimum, (A.54)
f(7,8) =0. (A.55)

Usually the method of the Lagrangian multipliers are used to solve above equations. We
introduce K additional unknowns A\ = (A, ..., A\x)? and rephrase the problem by requiring

Q*(7,EX) = (F — VDG — 7) + 23 f(77, €) = minimum. (A.56)

We have now a total of n + J + K unknowns. When the derivatives of Q2 with respect
to all unknowns are put equal to zero we get following set of equations

V@) i - §) + FI X =0, (A.57)
FIX=10, (A.58)
f(77,€) =0, (A.59)

where the matrices F, (of dimension K x N) and F; (of dimension K x .J) are defined by

ot ot

(Fy)ki = o, (Fe)wj = 5%,

(A.60)
The solution of this set of equations for the n + J + K unknowns and their errors must
in general case be found by iterations, producing successively better approximations.

In the linear LS estimation problem for the n measurable and J unmeasurable variables
which are related and have to satisfy a set of K constraint equations, if the measured values

7= (y1,---,¥n)T is a multi-normal variable, the Q2 is a x? variable with the degree of
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freedom (K — J). For the non-linear LS estimation problem of non-linear constraint
equations, and/or ¥ is not a multi-normal variable, the ()%, may be approximated by
X2 (K = J).

The momentum-energy conservation laws constitute a set of 4 constraint equations.
If all the particle’s parameters in a reaction or a decay process have been measured
(no unmeasurable variables) and the momentum-energy conservation laws are applied
to obtain better values of particles parameters (4C kinematic fit), the Q2. of the LS
estimator is then an approximate x?(4) variable. If there exist J unmeasurable variables
and r intermediate resonances which promptly decayed to observed final state particles,
and the invariant masses of daughter particles of these resonances are constrained to their

mother particles’ masses, then the Q2. is approximately a x?(4 + r — J) variable.

A.2 Interval estimation, confidence interval and up-
per limit

The task of the interval estimation is to locate a region which contains the true value of
the parameter 6 to be studied with a probability . This region is called the confidence
interval with coverage probability v. When the goal of an experiment is to determine a
parameter 6, the result is usually expressed by quoting, in addition to the point estimate,
some sort of confidence interval which reflects the statistical precision of the measurement.
In the simplest case this can be given by the parameter’s estimated value 0 plus/minus
an estimate of the standard deviation of é, 4. If the parameter # has boundary (without
losing generality, we assume it is lower boundary with the value zero throughout this
Appendix), and the estimate of # in an experiment is close to this boundary, then the
determination of the interval estimation is difficult and needs to be treated in special way.

A.2.1 Frequentist confidence interval
Neyman method for confidence interval

Confidence interval refers to frequentist interval obtained with a procedure due to Ney-
man [7]. Consider a pdf f(x;60) where x represents the measurement of the experiment
and # the unknown parameter for which we want to construct a confidence interval. The
variable z could (and often does) represent an estimator of . Using f(x;#) we can find
for a pre-specified probability v = 1 — « and for every value of 8 a set of values z;(6, @)
and z5(0, @) such that

Plzy;<z<z90)=1—a=vy= /@ f(z;0)dx. (A.61)

This is illustrated in Fig. A.1: a horizontal line segment [z(0, ), z2(0, )] is drawn for
representative values of §. The union of such intervals for all values of 6, designated in
the figure as D(«), is known as the confidence belt. Typically the curves z;(6, «) and
x9(0, ) are monotonic functions of #, which we assume for this discussion.

Upon performing an experiment to measure z and obtaining a value z, one draws a
vertical line through zy. The confidence interval for # is the set of all values of § for which
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Figure A.1: Construction of the confidence belt

the corresponding line segment [z (6, ), x2(6, )] is intercepted by this vertical line. Such
confidence intervals are said to have a confidence level (CL) equal to v =1 — «.

Now suppose that the true value of # is 6, indicated in the figure.We see from the
figure that 6y lies between 6, (x) and 65(x) if and only if z lies between x1(6p) and z2(6y).
The two events thus have the same probability, and since this is true for any value 6, we
can drop the subscript 0 and obtain

y=1—a=P(z1(0) <z <z2(0)) = P(ba2(z) < 0 < 0,(x)). (A.62)

In this probability statement 6;(z) and 6,(z), i.e., the endpoints of the interval, are the
random variables and 6 is an unknown constant. If the experiment were to be repeated
a large number of times, the interval [y, 65] would vary, covering the fixed value # in a
fraction v = 1 — « of the experiments.

The condition of coverage probability does not determine z; and zs uniquely and
additional criteria are needed. The most common criterion is to choose central intervals
such that the probabilities below z; and above x5 are each «/2. In other cases one may
want to report only an upper or lower limit, then the probability excluded below x; or
above x5 can be set to zero.

When the observed random variable x is continuous, the coverage probability obtained
with the Neyman construction is v = 1 — «, regardless of the true value of the parameter.
If z is discrete, however, it is not possible to find segments [z1(6, @), z2(6, )] that satisfy
Eq. A.62 exactly for all values of §. By convention one constructs the confidence belt
requiring the probability P(z; < z < x2) to be greater than or equal to 7y = 1 — a. This
gives confidence intervals that include the true parameter with a probability greater than
or equal to y =1 — .

Gaussian distributed measurements

An important example of constructing a confidence interval is when the data consist of a
single random variable x that follow a Gaussian distribution; this is often the case when
x represents an estimator for a parameter and one has a sufficiently large data sample.
If there is more than one parameter being estimated, the multivariate Gaussian is used.
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For the univariate case with known o,

1 pto 2792
y=1—-a= / e~ @27 gy = er f( ) (A.63)
I

0
2mo Ju—d \/50

is the probability that the measured value z will fall within £0 of the true value p. From
the symmetry of the Gaussian with respect to z and p, this is also the probability for
the interval x & ¢ to include p. The choice § = o gives an interval called the standard
error which has v =1 — a = 68.27% if ¢ is known. Values of « for other frequently used
choices of § are given in Table A.1. The relation of o and ¢ can be also represented by the
cumulated distribution function for the x? distribution for x? = (6/0)? and n = 1 degree
of freedom:

7

y=1—a=F(x*n=1). (A.64)

For multivariate measurements of, say, n parameter estimates = (f,...,0,)", one

Table A.1: Area of the tails o outside 46 from the mean of a Gaussian distribution.

o 0 o 0
0.3173 lo 0.2 1.28¢
0.0455 20 0.1 1.640
0.0027 30| 0.05 |1.960

6.3x107° | 40 | 0.01 2.580
5.7x 1077 | 50 | 0.001 | 3.29¢
2.0x 107% | 60 | 0.0001 | 3.89¢

requires the full covariance matrix V;; = cov(éi, 9;), which can be estimated by ML or LS
method.

If the parameters 0 are estimated with the ML method, for sufficient large n and the
likelihood function satisfies the regularity conditions, the likelihood function distributed
asymptotically as a multi-Gaussian, then we have

= =

InL(0) = InLymas — Q(6)/2, (A.65)
where Q(0) = (6 — 6)TV-L(A)(6 — ) is asymptotically a x2(k) variable, and k is the
dimension of §. The intersection contour of super-plane inL = InLy., — Q+/2 and super-

=

surface InL(#) forms the boundary of the confidence region of # with coverage probability
of v = 1 — «, which is calculated by the cumulated x? function

o}
T=1-a=PQ<Q,)= [ (Qiv = K)dQ = Fu(Qsiv = ). (A.66)

In the case that the parameters 0 are estimated with LS method, for linear LS estimator
and multi-Gaussian measurements, we have
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where Q2 4(0) = (6 — 6)TV (0)(6 — 6) is a x2(k) variable and k is the dimension of § for
non-constraint LS estimation, and the dimension of 6 minus the number of independent
linear constraint equations for constraint LS case. The intersection contour of super-plane
Q*(0) = Q2,, + Q. and super-surface Q2(f) forms the boundary of the confidence region
of 6 with coverage probability of v = 1 — «, which is also calculated by Eq. A.66. Values
of @, for k£ = 1,2, 3 are given in Table A.2 for several values of the coverage probability

y=1—-aq.

Table A.2: @, for k = 1,2,3 corresponding to a coverage probability v = 1 — « in the
large data sample limit.

(%) [ k=1 k=2 k=3
68.27 | 1.00 2.30 3.53
90. | 2.71 4.61 6.25
95. [3.84 599 7.82
95.45 | 4.00 6.18 8.03
99. |6.63 9.21 11.34
99.73 | 9.00 11.83 14.16

If the mentioned conditions are not fully satisfied, the confidence region determined
by Egs. A.65 and A.67 are not exact but an approximate one.

The ML method has an advantage that is easier to calculate the confidence region
for combining several independent measurements of same parameters. Assume N inde-

pendent measurements give likelihood functions InL;(f),7 = 1,..., N, then the combined
likelihood function is simply

InL(f) = fj InL;(6). (A.68)

Then using this likelihood functions in Eq. A.65 can give the confidence region with

coverage probability v for combined estimate g,

Poisson distributed measurements

If n represents the number of events produced in a reaction with cross section o, say in a
fixed integrated luminosity L, then it follows a Poisson distribution with mean s = oL in
the case there is no background. Therefore, to determine the cross section of a reaction
or the branching ratio of a decay process in terms of the number of observed events, the
interval estimation of Poisson distributed data must be met. The probability of observing
n events of the Poisson distribution with the mean s is

n,—Ss

S'e

P(n,s) = (A.69)

n!

The upper and lower (one sided) limits on the mean s can be found from the Neyman
procedure to be

1
Slo = §FX_21 (alo; 2")7 (A70)
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Sup = %szl(l — up); 2(n +1)), (A.71)
where the upper and lower limits are at confidence levels of 1 -, and 1—«,,, respectively,
and FX_21 is the quantile of the x? distribution (inverse of the cumulative distribution).
The quantiles FXEI can be obtained from standard tables or from the CERNLIB routine
CHISIN. For central confidence intervals at CL 1 — «, set aj, = ay, = /2. Values for
confidence levels of 90% and 95% are shown in Table A.3.

Table A.3: Lower and upper (one-sided) limits for the mean s of a Poisson variable given
n observed events in the absence of background, for CL of 90% and 95%

1—a=90% 1—a=9%

n Slo Sup Slo Sup

0 2.30 3.00
1 0.105 3.89 0.051 4.74
2 0.532 5.32 0.355 6.30
3 1.10 6.68 0.818 7.75
4 1.74 7.99 1.37 9.15
) 2.43 9.27 1.97 10.51
6 3.15 10.53 2.61 11.84
7 3.89 11.77 3.29 13.15
8 4.66 12.99 3.98 14.43
9 5.43 14.21 4.70 15.71
10 6.22 15.41 5.43 16.96

If the number of observed events n contains both signal and background events, which
are Poisson variables with mean s and b, respectively, then we have

DK —(s+b)
Pn,s) = &7 )nf . (A.72)

For a specific value of s, the upper and lower limit of the central confidence region, [n;, n,],
and the lower limit of the upper confidence belt, n,;,, at given confidence level y =1 — «
can be determined by

ny

S Ps)<s, Y Pns)<s, (A.73)
n=0 2 n=mnq,+1 2
Mo
> P(n,s) <a, (A.74)
n=0

respectively. For all s values, such calculations give the confidence belts for central region
and upper confidence belt. The inequality sign is to ensure the actual coverage greater or
equal to the given coverage in the discrete variable case.
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Confidence interval near the physics boundary

A number of issues arise in the construction and interpretation of confidence intervals
when the parameter can only take on values in a restricted range. An important sample
is where the mean of a Gaussian variable is constrained on physical grounds to be non-
negative This arlses for example, when the square of the neutrino mass is estimated
from m? = E? — p?, where F and p are 1ndependent Gaussian distributed estimates of
the energy and momentum. Although the true m? is constrained to be positive, random
errors in F and p can easily lead to negative values for the estimate 1>

If one uses the prescription given above for Gaussian distributed measurements, which
says to construct the interval by taking the estimate plus/minus one standard deviation,
then this can give intervals that are partially or entirely in the unphysical region. In
fact, by following strictly the Neyman construction for the central confidence interval,
one finds that the interval is truncated below zero; nevertheless an extremely small or
even a zero-length interval can result.

An additional important example is where the experiment consists of counting a certain
number of events, n, which is assumed to be Poisson distributed. Suppose the expectation
value E(n) = p is equal to s + b, where s and b are the means for signal and background
processes, and assume further that b is a known constant. Then § = n — b is an unbiased
estimator for s. Depending on true magnitudes of s and b, the estimate § can easily fall
in the negative region. Similar to the Gaussian case with the positive mean, the central
confidence interval or even the upper limit for s may be of zero length.

An additional difficulty arises when a parameter estimate is not significantly far away
from the boundary, in which case it is natural to report a one-sided confidence interval
(often an upper limit). It is straightforward to force the Neyman prescription to produce
only an upper limit by setting x5 = oo in Eq. A.61 . Then z; is uniquely determined and
the upper limit can be obtained. If, however, the data come out such that the parameter
estimate is not so close to the boundary, one might wish to report a central (i.e., two-
sided) confidence interval. As pointed out by Feldman and Cousins [8], however, if the
decision to report an upper limit or two-sided interval is made by looking at the data
("flip-flopping”), then the resulting intervals will not in general cover the parameter with
the probability 1 — «.

With the confidence intervals suggested by Feldman and Cousins [8], the prescription
determines whether the interval is one- or two-sided in a way which preserves the coverage
probability. Intervals with this property are said to be unified. Furthermore, this prescrip-
tion is such that null intervals do not occur. For a given choice of 1 — a, if the parameter
estimate is sufficiently close to the boundary, then the method gives an one-sided limit.
In the case of a Poisson variable in the presence of background, for example, this would
occur if the number of observed events is compatible with the expected background. For
parameter estimates increasingly far away from the boundary, i.e., for increasing signal
significance, the interval makes a smooth transition from one- to two-sided, and far away
from the boundary one obtains a central interval. The intervals according to this method
for the mean of Poisson variable in the absence of background are given in Table A.4.

The intervals constructed according to the unified procedure in Ref. [8] for a Poisson
variable n consisting of signal and background have the property that for n = 0 observed
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Table A.4: Unified confidence interval [sq, so] for a mean s of a Poisson variable given n
observed events in the absence of background, for CL of 90% and 95%

1—a=90% 1—a=9%

n S1 S9 S1 S9o

0 0.00 2.44 0.00 3.09
1 0.11 4.36 0.05 5.14
2 0.53 5.91 0.36 6.72
3 1.10 7.42 0.82 8.25
4 1.47 8.60 1.37 9.76
) 1.84 9.99 1.84 11.26
6 2.21 11.47 2.21 12.75
7 3.96 12.53 2.58 13.81
8 3.96 13.90 2.94 15.29
9 4.36 15.30 4.36 16.77
10 5.50 16.50 4.75 17.82

events, the upper limit decreases for increasing expected background. This is counter-
intuitive, since it is known that if n = 0 for the experiment in question, then no background
was observed, and therefore one may argue that the expected background should not be
relevant. Roe and Woodroofe [9] proposed a solution to this problem by using such a
fact that, given an observation n, the background b can not be larger than n in any
case. Therefore, the usual Poisson pdf should be replaced by a conditional pdf, and then
this conditional pdf is used to construct the confidence intervals following Feldman and
Cousins’ procedure.

Confidence interval incorporating systematic uncertainties

A modification of the Neyman method incorporating systematic uncertainty of the signal
detection efficiency has been proposed by Highland and Cousins [10], in which a ”semi-
Bayesian” approach is adopted, where an average over the probability of the detection
efficiency is performed. This method is of limited accuracy in the limit of high relative sys-
tematic uncertainties. On the other hand, an entirely frequentist approach has been pro-
posed for the uncertainty in the background rate prediction [11]. This approach is based
on a two-dimensional confidence belt construction and likelihood ratio hypothesis testing
and treats the uncertainty in the background as a statistical uncertainty rather than as a
systematic one. Recently, Conrad etal extend the method of confidence belt construction
proposed in [12] to include systematic uncertainties in both the signal and background
efficiencies as well as systematic uncertainty of background expectation prediction. It
takes into account the systematic uncertainties by assuming a pdf which parameterizes
our knowledge on the uncertainties and integrating over this pdf. This method, combining
classical and Bayesian elements, is referred to as semi-Bayesian approach. A FORTRAN
program, POLE, has been coded to calculate the confidence intervals for a maximum of
observed events of 100 and a maximum signal expectation of 50 [13].
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A.2.2 Bayesian confidence interval

In Bayesian approach one has to assume a prior pdf of an unknown parameter and then
perform an experiment to update the prior distribution. The prior pdf reflects the exper-
imenter’s subjective degree of belief about unknown parameter before the measurement
was carried out. The updated prior, called posterior pdf, is used to draw inference on
unknown parameter. This updating is done with the use of Bayes theorem [14]. Assuming
that n represents the number of observed events, s is the expectation of the number of
signal events which is unknown and to be inferred, p(s|n) is the conditional pdf of ob-
serving n events with given signal s, 7(s) is the prior pdf, the Bayes theorem gives the
posterior pdf:

p(s|n)m(s)
hsim) = gl T (A75)
Here the lower limit of the integral is zero, which is the possible minimum of the signal
expectation. Using this posterior pdf, one can calculate a Bayesian confidence interval for
the signal expectation s at given confidence level CL =1 — « :

l—a= /;U h(s|n)ds. (A.76)

However, such intervals are not uniquely determined. Often, the highest posterior density
(HPD) confidence interval I is chosen, which is determined in following way:

l—a= /h(s|n)ds, h(si|n) > h(s2|n) for any s; € I and sy ¢ 1. (A.7T7)
I

The upper limit of the signal expectation s at given confidence level CL =1 — «, syp, is
naturally given by:

1 —a= /0 7 h(s|n)ds. (A.78)

The nice feature of the Bayesian approach is that the zero value of an upper limit syp
always corresponds to the zero value of confidence level C'L = 1 — «, which is not neces-
sarily true for the classical approach. The most important issue is to determine a prior
pdf of the parameter. This is an issue which brings most of controversies into Bayesian
methods. An important question is that if one should use an informative prior, i.e., a
prior which incorporates results of previous experiments, or a non — in formative prior,
i.e., a prior which claims total ignorance. The major objection against informative prior
is based on such argument: if we assume a prior which incorporates results of previous
experiments, then our measurement will not be independent, hence, we will not be able
to combine our results with previous results by taking a weighted average.

Thus, we only discuss the Bayesian inference that assumes a non-informative prior
pdf for the non-negative parameter of a Poisson distribution. For the case that in the
"signal region” where the signal events resides, the number of signal events is a Poisson
variable with unknown expectation s , and the number of background events is a Poisson
variable with expectation b, the conditional pdf of observing total events n, p(s|n), can
be represented by
(S+ b)ne—(s+b)

n! '

P(s|n) = (A.79)
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To deduce the posterior pdf, one has to assume a prior pdf. Bayes stated that, the non-
informative prior for any parameter must be flat [14]. This statement does not based
on any strict mathematical argument, but merely his intuition. The obvious weakness of
Bayes prior pdf is that if one can assume a flat distribution of an unknown parameter,
then one can also assume a flat distribution for any function of this parameter, and these
two prior functions are apparently not identical. Jeffreys [15] resolves this problem by
introducing an invariate non-informative prior pdf, which can be deduced from Fisher
information. For the pdf shown by Eq. A.79, the Jeffreys prior pdf is proportional to
1/v/s 4+ b . In general, we can use a prior pdf of

7(s) ox !

(s+b)™’
m = 0 corresponds to Bayes prior, and m = 0.5 to Jeffreys prior. One can choose m value
as he/she thinks appropriate, however, it should always be kept in mind that different m
value will give different answer for the confidence interval or upper limit. Substituting
p(n|s) of Eq. A.79 and 7(s) of Eq. A.80 into Eq. A.75, the posterior pdf is then given by

s>0, 0<m<I1. (A.80)

(S + b)nfmef(s-kb)
'n—m+1,0)°

h(s|n) = (A.81)

where ~
[(z,b) = / s*le®ds, x>0,b>0 (A.82)
0

is an incomplete gamma function.

In the case that the systematic uncertainties of the signal efficiency and background
expectation can be neglected, the signal expectation s is an unknown constant and the
background expectation b is a known value. Substituting the posterior pdf of Eq. A.81
into Eq. A.78, we obtain

a:P(n—m—Fl,sUp—Fb). (A83)
I(n—m+1,b)

If the flat priorm = 0Ois used, Eq. A.83 turns into

n (sup+b)k
Z’“Zon B (A.84)
2k=0 &1
The upper limit sy p at given confidence level 1 —« can be acquired by solving Eq. A.83 or
Eq. A.84 numerically from measured values of n and b. Eq. A.84 has been recommended by
PDG [4], therefore, widely used in particle physics experiments. However, from statistics
point of view, the Jeffreys prior seems to be a more appropriate non-informative prior
as mentioned above, therefore, using Eq. A.83 with m = 0.5 to determine syp seems a
reasonable choice.

Now we turn to the question of inclusion of systematic uncertainties. First we consider
only the uncertainty of background expectation is present, and the distribution of the
background expectation is represented by a pdf fy (b, 0,) with the mean b and standard
deviation o, . The conditional pdf expressed by Eq. A.79 now is modified to

a(nls)e = [ pnlshy - fu(b,on)ab (A.85)

a=¢ °UP.
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where p(n|s)y has the same expression in Eq. A.79 with b replaced by ¥'.

Next we take into account the uncertainties of the signal efficiency and background
expectation simultaneously, and consider they are independent each other. The distri-
bution of the signal relative efficiency e (with respect to the nominal signal detection
efficiency) is described by a pdf f.(1,0.) with the mean 1 and standard deviation o.. The
conditional pdf described by Eq. A.79 is then further modified to

q(nls)s = /Ooo /Ooop(n|8€)bffu(b, oy) fe(1, 02)db'de, (A.86)

where p(n|se)y represents that in Eq. A.79 b is replaced by ¢’ , and s by se . One notices
that the lower limits of integrals in Eqs. A.85, A.86 are all zeros, which are the possible
minimum value of any efficiencies and number of background events.

Using ¢(s|n), in Egs. A.85, A.86 to construct posterior pdf

q(ns)em(s)

M = T gl (s 50
one can calculate the confidence interval or upper limit syp on s at any given confidence
level with inclusion of systematic uncertainties in terms of Eq. A.76 or A.78.

An algorithm for calculating the upper limit at given confidence level with or without
inclusion of systematic uncertainties in pure Bayesian approach has been coded. It has
been implemented as a FORTRAN program, BPULE (Bayesian Poissonian Upper Limit
Estimator) [16], where an iterative procedure is carried out by minimizing the difference
between the given confidence level and the calculated value in terms of Eq. A.78 until a
convergence is reached.

A.3 Tests of hypotheses

In addition to estimating parameters, one often wants to assess the validity of certain
statements concerning the data’s underlying distribution. Hypothesis tests provide a rule
for accepting or rejecting hypotheses depending on the outcome of a measurement. We
restrict ourselves here to discuss the Goodness-of-fit tests - one of the non-parametric
tests, which deals with questions of the functional form for the distribution of the data
and gives the probability to obtain a level of incompatibility with a certain hypothesis
that is greater than or equal to the level observed with the actual data. Two methods will
be stated: Pearson’s x? test and Kolmogorov-Smirnov test, which is applicable for the
large and small size of the measured data sample, respectively. Finally, we have a section
to discuss an important concept in particle physics experiment-the statistical significance
of signal.

A.3.1 Goodness-of-fit test

Pearson’s x? test

We assume that n observations on the variable x belong to N mutually exclusive classes,
such as successive intervals in a histogram, non-overlapping regions in two-dimentional
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plot, etc. The number of events nq, ng, ...,ny in the different classes will then be multi-
nomially distributed, with probabilities p; for the individual classes as determined by the
underlying distribution f(x) for continuous variable z:

P = / f(z)dz, i=1,2,...,N,
Nz,

or ¢; = P(x =x;),j =1,2,--- for discrete variable z:
bi = Z g5, i:1a2a"'7N7
j,ijAz,-

where Ax; represents the i-th interval. The hypothesis we wish to test specifies the class
probabilities according to a certain prescription,

Hy ' Di = Dois 1= 1:25“'aN, (A88)
where
N
> poi =1, (A.89)
i=1
is the overall normalization and

poZ'Z/A folx)dz, or po= D qo
z;

j,CL‘j eNx;

Therefore, what we wish to test is if the distribution of the observation f(x) or g¢; is
consistent with the assigned distribution fy(x) or go;, or equivalently, if the hypothesis H,
is accepted by the observed data, given that the total number in all classes is n? To test
whether the set of predicted numbers npy; is compatible with the set of observed numbers
n; we take as our test statistic the quantity

X (ni = mpei)® 1 g
X? = : ==Y "t —n A.90
izzl nPo; n ,Zzl Doi ( )

When Hy is true this statistic is approximately x2(N — 1) distributed. This is called the
Pearson theorem.

If Hy is true and the experiment is repeated many times under the same conditions
with n observations, the actual values obtained for X2, X2 will therefore be distributed
nearly like x*(N — 1); in particular, the mean value for X2, will be ~ N — 1 and the
variance ~ 2(N — 1). If, on the other hand, Hy is not true, the expectation for each n;
is not npy;, and the sum of terms (n; — npO,-)2 /mpo; will tend to become on the average
larger than if H, were true. Hence it seems reasonable to reject Hy if X7 becomes too
large. The criteria to reject Hy at significance level « is
X2, > x2(N-1), (A.91)

O

where x%(N — 1) is determined by the x?>(N — 1) pdf f(y; N —1) such that

a=/2 fly; N = 1)dy.
Xa(N_l)
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Often, the model which to describe the distribution of the measured data includes L
unknown parameters. For a Least-Square estimation we know that the comparison be-
tween data and fitted model is made using the x? distribution with a number of degrees of
freedom equal to the number of independent observations minus the number of indepen-
dent parameters estimated. This procedure is exact only in the limit of infinitely many
observations and with a linear parameter dependence; otherwise it is an approximation.
Thus, if there are L parameters in Hy which are estimated by the LS method and N
classes subject to an overall normalization condition, Pearson’s x? test for goodness-of-
fit consists in comparing the fitted (minimum) value X2, to the x? distribution with
(N —1— L) degrees of freedom.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test avoids the binning of individual observations and
may be more sensitive to the data, and is superior to the x? test in particular for small
samples and has many nice properties when applied to problems in which no parameters
are estimated.

Given n independent observations on the variable x we form an ordered sample by ar-
ranging the observations in ascending order of magnitude, x1, x5, - - -, z,,. The cumulative
distribution for this sample of size n is now defined by

Qa T < Zj,
Sn(x) = %a Z; S z S Titi1, (A92)
1, T > T,

Thus S, (z) is an increasing step function with a step of height 1/n at each of the obser-
vational points x1, 29, -, Tp.

The KS test involves a comparison between the observed cumulative distribution func-
tion S, (z) for the data sample and the cumulative distribution function Fy(z) which is
determined by some theoretical model. We state the null hypothesis as

Hy: So(z) = Fy(z). (A.93)

For H, true one expects that the difference between S, (z) and Fy(z) at any point should
be reasonably small. The KS test looks at the difference S, (z) — Fy(z) at all observed
points and takes the maximum of the absolute value of this quantity, D,,, as a test statistic

D,, = maz|S,(z) — Fy(x)|. (A.94)

It can be shown that provided no parameter in Fy(x) has been determined from the data,
and assuming H, true, the variable D, has a distribution which is independent of Fy(z),
i.e. D, is distribution free. This holds irrespective of the sample size.

For continuous variable z and finite n, the D,, has the distribution of [17]

) 0, z <0,
=tz i+ =1y
P(Dy<z45) =4 JI0J0 7 [ fyn e ya)dys - dyn, 0<z2<1—
1, z>1— 5,

(A.95)
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where

_ nl, whenO0<y <<y, <1,
f(ylﬂ PSP ) yn) -_— { 0’ Others_ (A-96)

For large n the D, has the cumulative distribution of

. < _ - r—1,-2r222
lim P(D, < %) =1- 2;(—1) e . (2>0). (A.97)
This relation is approximately valid at n ~ 80.
If H is true, the D, tends to be small, while if Hy is not true, the D, tends to be
larger than if H, were true. Hence it seems reasonable to reject Hy if D,, becomes too
large. The criteria to reject Hy at significance level « is

P(Dy > Dya). (A.98)

A table in the Appendix of the book [2] or [3] gives the critical values D,, , at 5 different
significance level o for n < 100, and the approximate expression for n > 100.

A.3.2 Statistical significance of signal

The statistical significance of a signal in an experiment of particle physics is to quantify
the degree of confidence that the observation in the experiment either confirm or disprove
a null hypothesis Hj, in favor of an alternative hypothesis H;. Usually the Hy stands for
known or background processes, while the alternative hypothesis H; stands for a new or
a signal process plus background processes with respective production cross section. This
concept is very useful for usual measurements that one can have an intuitive estimation,
to what extent one can believe the observed phenomena are due to backgrounds or a
signal. It becomes crucial for measurements which claim a new discovery or a new signal.
As a convention in particle physics experiment, the ”50” standard, namely the statistical
significance S > 5 is required to define the sensitivity for discovery; while in the cases
S >3 (S > 2), one may claim that the observed signal has strong (weak) evidence.

However, as pointed out in Ref. [18], the concept of the statistical significance has not
been employed consistently in the most important discoveries made over the last quarter
century. Also, the definitions of the statistical significance in different measurements
differ from each other. Listed below are various definitions for the statistical significance
in counting experiment (see, for example, refs. [19] [20] [21]):

Sy = (n—0b)/Vb, (A.99

Sy = (n—b)/V/n, (

Sip = \/ﬁ/\/E, (
SBl = 51 — k(a) ’I’L/b, (A102

Spi2 = 2512 — k(o), (
/SN N(0,1)dz = 2 e_bl;—:

—0o0

, (A.104)
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where n is the total number of the observed events, which is the Poisson variable with
the expectation s+ b, s is the expected number of signal events to be searched, while b is
the known expected number of Poisson distributed background events. All numbers are
counted in the ”signal region” where the searched signal events are supposed to appear.
In equations A.102 and A.103 the k() is a factor related to the « that the corresponding
statistical significance assumes 1 — o acceptance for positive decision about signal obser-
vation, and £(0.5) = 0, k(0.25) = 0.66, £(0.1) = 1.28, £(0.05) = 1.64, etc [20]. In equation
A.104, N(0,1) is a notation for the standard normal function. On the other hand, the
measurements in particle physics often examine statistical variables that are continuous
in nature. Actually, to identify a sample of events enriched in the signal process, it is
often important to take into account the entire distribution of a given variable for a set
of events , rather than just to count the events within a given signal region of values. In
this situation, I. Narsky [21] gives a definition of the statistical significance via likelihood
function

Sy =/=2InL(b)/L(s +b) (A.105)

under the assumption that —21In L(b)/L(s + b) distributes as x? function with degree of
freedom of 1.

Upon above situation, it is clear that we desire to have a self-consistent definition for
statistical significance, which can avoid the ambiguity that the same S value in different
measurements may imply virtually different statistical significance, and can be suitable
for both counting experiment and continuous test statistics.

Definition of the statistical significance

In the PDG [4], the p—value is defined to quantify the level of agreement between the
experimental data and a hypothesis. Assume an experiment makes a measurement for
test statistic ¢ being equal to t.s, and t has a probability density function g(¢|Hp) if a
null hypothesis Hj is true. We further assume that large ¢ values correspond to poor
agreement between the null hypothesis Hy and data, then the p—value of an experiment
would be

Dtors) = P(t > tops| Ho) = / (| Hy)dt. (A.106)

obs
A very small p—value tends to reject the null hypothesis Hy.
Since the p—value of an experiment provides a measure of the consistency between
the Hy hypothesis and the measurement, Zhu [22] define the statistical significance S in
terms of the p—value in the following form

/_SS N0, 1)dz = 1 — p(tops) (A.107)

under the assumption that the null hypothesis H, represents that the observed events can
be described merely by background processes. Because a small p—value means a small
probability of Hy being true, corresponds to a large probability of H; being true, one
would get a large signal significance S by this expression. The left side of equation A.107
represents the integral probability of the normal distribution in the region within S stan-
dard deviation (So). In such a definition, some correlated S and p—values are listed in
Table A.5.
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Table A.5: Statistical Significance S and correlated p—value.

S | p—value
0.3173
0.0455
0.0027

6.3 x 1075

5.7 x 1077

2.0 x 1079

S O W N~

Statistical significance in counting experiment

A group of particle physics experiment involves the search for new phenomena or signal by
observing a unique class of events that can not be described by background processes. One
can address this problem to that of a ” counting experiment”, where one identifies a class of
events using well-defined criteria, counts up the number of observed events, and estimates
the average rate of events contributed by various backgrounds in the signal region, where
the signal events (if exist) will be clustered. Assume in an experiment, the number of
signal events in the signal region is a Poisson variable with the expectation s, while the
number of events from backgrounds is a Poisson variable with a known expectation b, then
the observed number of events distributes as the Poisson variable with the expectation
s+ b. If the experiment observed n.,s events in the signal region, then the p—value is

p(nobs) = P(n>nobs|H0): Z ﬁeib (A108)
N=MNobs :
Tops —1 bn
= 1 —_ J— —b
TLZ:() n!6

Substituting this relation to equation A.107, one immediately has

Tops— 1 b’n

/_SS N(O,D)dz =

n=0

ﬁe_b (A.109)

Then, the signal significance S can be easily determined. Comparing this equation with
equation A.104 given by Ref. [21], we found the lower limit of the integral is different.

Statistical significance in continuous test statistics

The general problem in this situation can be addressed as follows. Suppose we identify a
class of events using well-defined criteria, which are characterized by a set of n observations
z1,- -+, %, for a random variable x. In addition, one wish to test a hypothesis which
predicts the probability density function of z, say f (x|§), where § = (01,0, ...,0;) is a set
of parameters which need to be estimated from the data. Then the problem is to define
a statistic that gives a measure of the consistency of the distribution of data with the
distribution given by the hypothesis.
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To be concrete, we consider the random variable x is, say, an invariant mass, and the
n observations z,---,z, give an experimental distribution of x. Assuming parameters
0= (01,--,6k) = (0;; 0;), where @, and 0, represent the parameters belong to signal (say,
a resonance) and backgrounds contribution, respectively. We assume the null hypothesis
H, stands for that the experimental distribution of x can be described merely by the
background processes, namely, the null hypothesis Hy specifies fixed values for a subset
of parameters 9:. Therefore, the parameters g are restricted to lie in a subspace w of its
total space . On the basis of a data sample of size n from f(z|f) we want to test the
hypothesis Hy : ) belongs to w. Given the observations x1, - - -, x,, the likelihood function
is L=T1I"f (mz\g) The maximum of this function over the total space €2 is denoted by
L(Q); while within the subspace w the maximum of the likelihood function is denoted by
L(&), then we define the likelihood-ratio A = L(&)/L(S2). It can be shown that for Hy
true, the statistic
t=-2In\=2(In Ly (s + b) — In Lppyer (b)) (A.110)

is distributed as x*(r) (r is the number of parameters specified by Hj) when the sample
size n is large [1]. In equation A.110 we use In Lyqq (s + b) and In Ly,q,(b) denoting L($2)
and L(w), respectively. If A turns out to be in the neighborhood of 1, the null hypothesis
Hy is such that it renders L(&) close to the maximum L(S2), and hence Hy will have a large
probability of being true. On the other hand, a small value of A will indicates that H
is unlikely. Therefore, the critical region of A is in the neighborhood of 0, corresponding
to large value of statistic ¢. If the measured value of ¢ in an experiment is ., from

equation A.106 we have p—value

P(tops) = / ” X (t;7)dt. (A.111)

tobs

Therefore, in terms of equation A.107, one can calculate the signal significance according
to following expression:

/ " N0, 1)dz = 1 — p(t,) = /0 2k r)dt. (A.112)

-S

For the case of » = 1, we have
S tabs
/ N0, 1)dz = / 2(t: 1) dt (A.113)
-S 0
Viobs
— 2 / N(0,1)dx.
0

and immediately obtain

§ = Via (A.114)
[2(111 Lmaw(s + b) —In L., (b))]l/Q,

which is identical to the equation A.105 given by Ref. [21].
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