
Hadronic cross section measurements in e+e−–annihilation,
Effective fine structure constant at scale M2

Z,
and Precise test of the Standard Model

Hadronic cross section measurements in e+e−–annihilation are an indispensable input for
the estimation of the non–perturbative hadronic contribution to the running of the fine
structure constant, one of important input parameters in the electroweak precision mea-
surements. A number of good reviews on this subject have been written [1]. Part of the
materials is summarized here. In section 1 the definition of Rhad, its experimental determi-
nation and the present status of Rhad measurements at low energy are presented. Then the
evaluations of ∆α

(5)
had(M

2
Z),the non–perturbative hadronic contribution to the running of the

fine structure constant, will be given in Section 2. Section 3 discuss the choice of the input
parameters for the Standard Model, in particular, the effective fine structure constant at scale
MZ.

1 Measurements of e+e− → hadrons cross sections and Rhad

value

Rhad(s), by the proper definition, is the ratio of the total cross sections according to following
equation,

Rhad(s) =
σtot(e

+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
. (1)

Usually, however, experiments do not determine Rhad as a ratio of the total cross sections
as given by Eq. 1. Rather the hadronic experimental cross section is first corrected for QED
effects [2, 3, 4, 5], which include bremsstrahlung as well as vacuum polarization corrections.
The latter account for the running of the fine structure constant α(s). After these corrections
have been applied σtot is divided by the Born cross section σ0(e

+e− → γ∗ → µ+µ−) = 4πα2

3s
so

that

Rrmhad(s) =
σtot(e

+e− → γ∗ → hadrons)correxp

σ0(e+e− → γ∗ → µ+µ−)
.

Note that, the experimental cross section σ(e+e− → γ∗ → µ+µ−) never appears here and
is used by careful groups to check how good normalization is (see e.g., [6]).

Some general comments concerning the Rhad determination are in order.

• Exclusive vs Inclusive

Usually, for energies below 2 GeV the cross section is measured for individual chan-
nels, while above that value the hadronic final states are treated inclusively. In the
first case one can directly measure the total and differential cross sections of various
exclusive reactions kinematically allowed in given energy region. Having measured
the exclusive cross sections, one can determine the total cross sections and the value of
R by simply summing of them. This is of course not at all trivial since one should be
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sure that there is neither double counting nor missing final states and even more com-
plicated correlations between different channels are properly taken into account [7].
There is, in fact, still a systematic difference between the sum of exclusive channels
and the inclusive Rhad measurements in the energy range [1.4–2.1] GeV [8]. In view of
the many channels in this energy region as much as possible an inclusive measurement
should be pushed [9].

• Energy scan vs Radiative return

The measurement of the hadronic cross section has been usually performed via the
energy scan, that is, by systematically varying the e+e− beam energies. This tradi-
tional way of measuring of the hadronic cross section has one disadvantage - it needs
dedicated experiments. On the other hand, modern particle factories, such as the Fras-
cati φ-factory DAΦNE or the B-factories PEP-II and KEK-B are designed for a fixed
center-of-mass energy

√
s. An energy scan for the measurement of hadronic cross sec-

tions is therefore not feasible and an alternative way, the radiative return method, was
proposed recently. The radiative return method ( For a short theory review see [10]
and references therein ) relies on an observation that the cross section of the reaction
e+e− → hadrons + photons, with photons emitted from the initial leptons, factorizes
into a function H , fully calculable within QED, and the cross section of the reaction
e+e− → hadrons

dσ(e+e− → hadrons + γ′s)(s,Q2) =

H · dσ(e+e− → hadrons)(Q2) ,

where Q2 is the invariant mass of the hadronic system. Thus from the measured differ-
ential, in Q2, cross section of the reaction e+e− → hadrons + photons one can evaluate
σ(e+e− → hadrons) once the function H is known. As evident from the Eq.(2), the ra-
diative return method allows for the extraction of the hadronic cross section from the
production energy threshold of a given hadronic channel almost to the nominal en-
ergy of a given experiment (

√
s). The smaller cross section of the radiative process as

compared to the process without photons emission has to be compensated by higher
luminosities That requirement is met by meson factories (DAPHNE, BaBar, BELLE).
All of them were built for other purposes then the hadronic cross section measure-
ments, but their huge luminosities provide with data samples large enough for very
accurate measurements of interesting hadronic channels and/or give an information
on rare channels, which were not accessible in scan experiments.

The radiative return method has been successfully applied by KLOE to measure the
pion formfactor below 1 GeV [11] and by BABAR for the timelike proton-antiproton
formfactor and for several exclusive final states with higher multiplicities in the mass
range from threshold up to 4.5 GeV [12]. The combination of KLOE and BaBar data
allows to cover the hadronic cross section in the entire mass range below ∼ 4.5 GeV
. For an extensive review of the recent results of both collaborations concerning the
radiative return see [13] This method has the advantage of the same normalisation for
each energy point, even if it requires a very solid theoretical understanding of radiative
corrections, a precise determination of the angle and energy of the emitted photon, and
the full control of background events, especially for events with the photon emitted in
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the final state (FSR). The Karlsruhe-Katowice group computed the radiative corrections
up to NLO for different exclusive channels, implementing them in the event generator
PHOKHARA [14, 15, 16, 17, 18]. The current precision for the π+π−γ final state is 0.5%.

• Status of Rhad at low energy

During the last thirty years the ratio Rhad has been measured by several experiments.
Fig. 1 gives an updated summary of Rhad measurements by different experiments and
the current precision in different e+e− center-of-mass system (c.m.s.) energy regions
by Burkhardt and Pietrzyk [19].

– The π+π− threshold region.
Experimental data are poor below about 400 MeV because the cross section is
suppressed near the threshold. The most effective way to measure the threshold
in the time-like region is provided by Initial State Radiation (ISR) events, where
the emission of an energetic photon allows to study the two pions at rest.

– The ρ peak region.
The π+π− region between 0.5 and 1 GeV has been studied by different experi-
ments. CMD-2 [20] and SND [21] performed an energy scan at the e+e− collider
VEPP–2M (

√
s ∈ [0.4–1.4] GeV) with ∼ 106 and ∼ 4.5 × 106 events respectively,

with systematic errors ranging from 0.6% to 4% in the relative cross-section, de-
pending on the 2π energy region. The pion form factor has also been measured by
KLOE using ISR, and results are also expected soon by BABAR. KLOE published
a result [11] based on an integrated luminosity of 140 pb−1, that led to a relative
error of 1.3% in the energy region [0.6–0.97] GeV, dominated by systematics. At
the moment it has already collected more than 2 fb−1 at the φ meson peak, which
represents, around the ρ peak, a statistics of ∼ 2× 107 π+π−γ events. BABAR [12]
has already collected more than 300 fb−1 at the Υ peak, and is going to collect
about 1 ab−1 by the end of data taking.
The results of these four experiments(CMD-2, SND, KLOE, BABAR) in the next few
years will probably allow to know the π+π− cross-section for most of the ρ shape
with a relative accuracy better than 1% (even considering both statistical and sys-
tematic errors). In summary [19],

∗ very minor change introduced by CMD2, KLOE and SND measurements;
∗ Previous measurements in the ρ region were already relatively precise;

– The 1.05–2.0 GeV energy region.
The region [1.05–2.0 GeV] is the most poorly known. As we shall see from Fig. 2in
the section 3, the Rhad in this energy region contributes about 40% to the uncer-
tainty of the total dispersion integral for ∆

(5)
had(m

2
Z) [19], It also provides most of

the contribution to aHLO
µ above 1 GeV. New Rhad measurements in this energy

region therefore will be important.

– The high energy region
In the high energy region we must distinguish the J/ψ and the Υ resonances and
the background inclusive measurements of the total hadronic cross section which
is usually presented in term of Rhad value.
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For the narrow resonances ω, φ, the J/ψ family (6 states) and the Υ family (6
states) we can safely use the parametrization as Breit-Wigner resonances

σBW (s) =
12π

M2
R

Γee
ΓR

M2
RΓRΓ(s)

(s−M2
R)2 +M2

RΓ2(s)
(2)

or as a zero width resonance

σNW (s) =
12π2

MR

Γee δ(s−M2
R) (3)

Masses, widths and the electronic branching fractions can be taken from the Re-
view of Particle Properties [22].
In the region from the J/ψ to the Υ the earlier Rhad-measurements were from
Mark I [23, 24], γγ2 [25], DASP [26], PLUTO [27], LENA [28], Crystal Ball (CB) [29]
and MD-1 [30].
∗ The 2.0−−5.0 GeV energy region

In this energy region the earlier results were with a precision of 15%-20% [24,
25, 27]. In 2001 BESII published the results of Rhad measurements at 85 dif-
ferent c.m.s. energies between 2 and 4.8 GeV with an average precision of
6.6% [31], in addition to the 6 points published in 1999 [32]. This is a substan-
tial improvement. The BESII results were used in 2001 evaluation of ∆α

(5)
had(M

2
Z)

[33, 34] and the uncertainty were reduced to 5.9%.
∗ The 5.0−−7.0 GeV energy region

There is a longstanding annoyance. The values of Rhad in the literature from
MarkI [24] are surprisingly high ( 4.4±0.4 for the energy region 5.0−7.8 GeV
) compared to theory expectations ( ∼ 3.4) (See Fig. 1). In 1990 the aver-
age value of Rhad in the e+e− c.m.s. energy region between 5 and 7.4 GeV
was reported by the Crystal Ball Collaboration [29] to be 3.44 ± 0.03 ± 0.018
which is much more in line with extrapolation of perturbation QCD assum-
ing 5 quarks and in agreement with the other experiments PLUTO, LENA
and MD-1. These results were used in 1995 evaluation of ∆α

(5)
had(M

2
Z) [35, 36].

They together with the Rhad measurements in the energy region between 2
and 5 GeV of the BESII [31, 32] were mainly two major changes in the history
of determination of ∆α

(5)
had(M

2
Z). Although the results of the Crystal Ball are

preferred by theorists these data were never published. Thus there is room
for doubt. CLEO may have ability to settle this annoyance [37].

∗ The 7.0−−12.0 GeV energy region
In this region the pQCD calculations are unsure although the calculations are
in good agreement with the existing data. Improved measurement of Rhad is
necessary to avoid any dependence on pQCD where it’s uncertain.
The CLEO measurement from the Υ(4S) continuum data (

√
s = 10.52 GeV),

Rhad = 3.56 ± 0.01 ± 0.07 [38], is still hailed as one of the most accurate Rhad

measurement because this data point has both small statistical and systematic
error.
Recently CLEO collaboration has taken data for R at energies 7.0 − 11.3 GeV
( 6.96, 7.38, 8.38, 9.4, 10.0, 10.33, 11.2 GeV). These data are under analysis and
results can be expected soon [37].
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∗ The energy region above 12.0 GeV The Rhad in this region is described by the
parametrization based on third order QCD [33]

As we will discuss later the hadronic cross section measurement is crucial for the accurate
evaluation of the hadronic contributions to running of the electromagnetic coupling αQED.
It requires a more accurate knowledge of the hadronic cross section in a wide energy range
from the 2mπ threshold above. An optimal exploitation of a linear collider like the ILC for
precision physics requires an improvement of the precision of by something like a factor ten.

2 Hadronic Vacuum Polarization

The running of the electromagnetic coupling with momentum transfer, α(0) → α(s), caused
by fermion-pair loop insertions in the photon propagator, is customarily written as

α(s) =
α(0)

1−∆α(s)
=

α(0)

1−∆αeµτ (s)−∆αtop(s)−∆α
(5)
had(s)

, (4)

with α(0) = 1/137.036 [39]. The contribution of leptons is calculated diagrammatically up
to third order: ∆αeµτ (M

2
Z) = 3149.7686 × 10−5 with negligible uncertainty [40]. Since heavy

particles decouple in QED, the top-quark contribution is small: ∆αtop(M
2
Z) = −0.00007(1);

it is calculated by TOPAZ0 and ZFITTER as a function of the pole mass of the top quark,
mt. The running electromagnetic coupling is insensitive to new particles with high masses.
For light-quark loops the diagrammatic calculations are not viable as at such low energy
scales perturbative QCD is not applicable. Therefore, the total contribution of the five light
quark flavors to the hadronic vacuum polarization, ∆α

(5)
had(M

2
Z), is more accurately obtained

through a dispersion integral over the measured hadronic cross-section in electron-positron
annihilations at low centre-of-mass energies. The relevant vacuum polarization amplitude
satisfies the convergent dispersion relation[34]

ReΠ′
γ(s)− Π′

γ(0) =
s

π
Re

∫ ∞

s0

ds′
ImΠ′

γ(s
′)

s′(s′ − s− iε)

and using the optical theorem (unitarity) one has

ImΠ′
γ(s) =

s

e2
σtot(e

+e− → γ∗ → hadrons)(s) .

In terms of the cross-section ratio

R(s) =
σtot(e

+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
,

where σ(e+e− → γ∗ → µ+µ−) = 4πα2

3s at tree level, we finally obtain

∆α
(5)
hadrons(M

2
Z) = −αM

2
Z

3π
Re

∫ ∞

4m2
π

ds
R(s)

s(s−M2
Z − iε)

.

5



The dispersion integral can be evaluated either by direct integration between measured
data points or by using a parametrisation of the measured cross section of e+e− → hadrons.
In the first approach one use direct integration over the experimental values of cross sec-
tions, try to rely on the experimental data as much as possible and integrate directly the
data points by joining them by straight lines (trapezoidal rule). In this approach one can
take into account uncertainties of separate measurements in a straightforward manner.[35].
In the second approach one make a fit of the experimental points within some model and
integrate the arising parametrization of the data. This procedure inevitably leads to a model
dependence and it is not clear how experimental errors especially systematic uncertainties
can be taken into account[35].

Detailed evaluations of this dispersive integral from the experimental data have been car-
ried out by many authors [8, 9, 19, 33, 34, 35, 36, 41, 42, 43].There are also several evaluations
of ∆α

(5)
had(M

2
Z) which are more theory driven [44].

An important conclusion from studies before 1989 was described in the paper [41] that
the independent programs and parametrization method gave nearly identical results. Dif-
ferences in central values obtained from the use of trapezoidal rule between many data
points, partially smoothed functions or broad averages were negligible compared to the
experimental uncertainty in the data. The uncertainty in the result obtained from the inte-
gration is, therefore. almost entirely due to the experimental errors in the determination of
Rhad(s).

The result of the references [35] and [36]

∆α
(5)
had = 2804 (65)× 10−5 (5)

was used by The LEP Collaborations, the LEP Electroweak Working Group as the input pa-
rameter to constrain the Standard Model until summer 2000 [45].

After the BES published its consequence of substantially improved total cross section
measurement between 2 and 5 GeV [32] [31] some of these analyses were updated to include
the new e+e− data – mostly from the BES [31]as well as measurements by the CMD-2 [20] –
obtaining:

∆α
(5)
had = 2761 (36)× 10−5 (6)

[33], and
∆α

(5)
had = 2757 (36)× 10−5

[34]. The reduction, by a factor of two, of the uncertainty quoted in the articles of refs. [35, 36]
(70× 10−5), with respect to that in [33, 34] (36× 10−5), is mainly due to the data of BES.

The new estimates of ∆α
(5)
had(M

2
Z) of the papers [33][34], Eq. 6, was then used as the in-

put parameter in replace of Eq. 5 by The LEP Collaborations, the LEP Electroweak Working
Group until the summer 2004.

The latest update, ∆α
(5)
had = 2758 (35) × 10−5 [19], includes also the measurements of

KLOE [11].
Fig. 2 from ref. [46] illustrates the relative contributions from different e+e− c.m.s. energy

regions to ∆α
(5)
had(M

2
Z) both in magnitude and uncertainty. The region between 1.05− 2 GeV

gives an important contribution to the uncertainty despite its small contribution to the mag-
nitude.
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Table 1: Contributions for ∆α
(5)
had(M

2
Z)×104 (direct integration method) and ∆α

(5)
had(−s0)×104

(non-perturbative part in the Adler function method), with relative (rel) and absolute (abs)
error in percent.

Energy range ∆α
(5)
had(M

2
Z)× 104 rel [%] abs [%]

ρ, ω (E < 2MK) 36.23 [ 13.1](0.24) 0.7 1.1
2MK < E < 2 GeV 21.80 [ 7.9](1.33) 6.1 34.9
2 GeV < E < MJ/ψ 15.73 [ 5.7](0.88) 5.6 15.4
MJ/ψ < E < MΥ 66.95 [ 24.3](0.95) 1.4 18.0
MΥ < E < Ecut 19.69 [ 7.1](1.24) 6.3 30.4
Ecut < E pQCD 115.66 [ 41.9](0.11) 0.1 0.3
E < Ecut data 160.41 [ 58.1](2.24) 1.4 99.7

total 276.07 [100.0](2.25) 0.8 100.0

Comparison of estimates of ∆α
(5)
had(M

2
Z) performed during 90’s is shown in Fig. 3 from

reference [46].
Another recent update based on a compilation of the data shown in Fig. 4. yields ∆α

(5)
had =

0.027607± 0.000225 or 1/α(5)(m2
Z) = 128.947± 0.035

Contributions from various energy regions and the origin of the errors in this estimate
are shown in Fig. 5.

More details are given in Table 1.
In summary, to reach the high precision would require much more experimental effort to

delicately measure the σ(e+e− → hadrons) cross section both at low and high energies.[9]

3 Precise test of the Standard Model:
Input parameters and their uncertainties

In the last few decades the final electroweak measurements with data taken at the Z reso-
nance have been performed by the experiments operating at the electron-positron colliders
SLC and LEP. The mass and width of the Z boson, MZ and ΓZ , and its couplings to fermions
, for example the ρ parameter and the effective electroweak mixing angle for leptons, are
precisely measured:[47]

MZ = 91.1875± 0.0021 GeV
ΓZ = 2.4952± 0.0023 GeV
ρl = 1.0050± 0.0010

sin2 θlept
eff = 0.23153± 0.00016 .

Through radiative corrections evaluated in the framework of the Standard Model, the
large and diverse set of precise measurements allows many relations inspired by the Stan-
dard Model to be stringently tested and the free parameters of the model to be tightly con-
strained . The masses of W boson and top quarks are predicted to be: MW = 80.363 ±
0.032 GeV and mt = 173+13

−10 GeV, agreeing well with the direct measurements of these quan-
tities at LEPII and TEVATRON[48], successfully testing the Standard Model at the level of its
radiative corrections. Using in addition the direct measurements of mt and MW , the mass of
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the as yet unobserved Standard Model Higgs boson is predicted with a relative uncertainty
of about 50% and found to be less than 285 GeV at 95% confidence level[49].

Note that practical perturbation calculations in the Standard Model are approximations
obtained by truncation of perturbation series. The accuracy of the finite order approximation
for each Z-pole observable depends on the input parameter set chosen for Standard Model
calculations. A natural choice is the QED-like parametrization in terms of

α, αs, MW, MZ, mH, mf , (7)

where MW and MZ are the masses of the W boson and the Z boson, mH is the mass of the
Higgs boson, mf are the masses of all known fundamental fermions f , in particular, mt is
the top quark mass, and α and αs just are two coupling constants of the electromagnetic
and the strong interaction. Since loop corrections in general induce a running of the elec-
tromagnetic coupling constant α with momentum transfer (or s), The running of the strong
coupling, αs(s), is even larger. The Z0 resonance is sufficiently dominant for Z-pole ob-
servables, however, that the Z-pole approximation can be taken, and the relevant coupling
constants become simply α(m2

Z) and αs(m
2
Z).

Within the StandardModel, however, the mass of the W measured directly at the TEVA-
TRON and LEPII, is related to MZ and the Fermi constant Gµ through radiative corrections .
A very precise value for the latter, Gµ = 1.16637(1) · 10−5 GeV−2 , is derived from measure-
ments of the muon lifetime using two-loop corrections . This 9 ppm precision on Gµ greatly
exceeds the relative precision with which MW can be measured in the foreseeable future. In-
deed, this motivates our substitution ofGµ forMW as an input parameter for StandardModel
calculations.

Therefore, one uses the fine-structure constant α, the Fermi coupling constant Gµ, and
the mass of Z boson MZ as input parameters for precise calculation of radiative corrections
since they are the most precisely measured parameters. In fact,

• The fine-structure constant in the Thomson limit determined from the e± anomalous
magnetic moment, the quantum Hall effct, and other measurements[39]

α−1(0) = 137.03599911(46),
δα
α = 3.6× 10−9

(8)

• The Fermi coupling constant determined from the muon lifetime formula[50][51]

Gµ = 1.16637(1),
δGµ

Gµ
= 8.6× 10−6 (9)

• The mass of the Z boson determined from the Z-lineshape scan at LEP I[47]

MZ = 91.1875(21),
δMZ
MZ

= 2.4× 10−5 (10)
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• The effective fine-structure constant at the scale MZ[19]

α−1(MZ) = 128.940(48),
δα(MZ)
α(MZ)

= (1.6 ∼ 6.8)× 10−4 (11)

The relative uncertainty of α(MZ) is roughly one order of magnitude worse than that of MZ,
making it one of the limiting factors in the calculation of precise SM predictions.

Note that ∆α enters in electroweak precision physics typically when calculating versions
of the weak mixing parameter sin2 Θi from α, Gµ and MZ via[52]

sin2 Θi cos2 Θi =
πα√

2GµM2
Z

1

1−∆ri
(12)

where

∆ri = ∆ri(α, Gµ, MZ , mH , mf 6=t, mt) (13)

includes the higher order corrections which can be calculated in the SM or in alternative
models.

∆ri depends on the definition of sin2 Θi. The various definitions coincide at tree level and
hence only differ by quantum effects. From the weak gauge boson masses, the electroweak
gauge couplings and the neutral current couplings of the charged fermions we obtain

sin2 ΘW = 1− M2
W

M2
Z

(14)

sin2 Θg = e2/g2 =
πα√

2GµM2
W

(15)

sin2 Θf =
1

4|Qf |

(
1− vf

af

)
, f 6= ν , (16)

respectively. For the most important cases and the general form of ∆ri reads

∆ri = ∆α− fi(sin
2 Θi) ∆ρ+ ∆ri remainder (17)

where

• The large term ∆α is due to the photon vacuum polarization

∆α = Πγγ
1 (0)− Πγγ

1 (M2
Z) (18)

This universal term which affects the predictions for MW , ALR, AfFB, Γf , etc. The oder
terms can be calculated safely in perturbation theory.

• ∆ρ is the famous correction to the ρ–parameter which is defined as the neutral to
charged current ratio
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∆ρ = ρ− 1 =
GNC

Gµ

=
ΠZZ

1 (0)

M2
Z

− ΠWW
1 (0)

M2
W

(19)

∆ρ exhibiting the leading top mass correction

∆ρ '
√

2Gµ

16π2
3m2

t ; mt � mb (20)

which allowed LEP experiments to obtain a rather good indirect estimate of the top
quark mass prior to the discovery at the TEVATRON.

Note that in (17) fW = c2W/s
2
W ' 3.35 is substantially enhanced relative to ff = 1.

• The “remainder” term although sub-leading is very important for the interpretation of
the precision experiments at LEP and includes part of the leading Higgs mass depen-
dence. For a heavy Higgs particle we obtain the simple expression

∆rHiggs
i '

√
2GµM

2
W

16π2

{
cHi (ln

m2
H

M2
W

− 5

6
)

}
; mM �MW (21)

where cHf = (1 + 9 sin2 Θf )/(3 sin2 Θf ) and cHW = 11/3, for example.

The uncertainty δ∆α implies uncertainties δMW , δ sin2 Θf given by

δMW

MW

∼ 1

2

sin2 ΘW

cos2 ΘW − sin2 ΘW

δ∆α ∼ 0.23 δ∆α (22)

δ sin2 Θf

sin2 Θf

∼ cos2 Θf

cos2 Θf − sin2 Θf

δ∆α ∼ 1.54 δ∆α (23)

The effects of the uncertainty due to dahz on the StandardModel prediction for the ρ
parameter and sin2 θlept

eff can be seen in Fig 6. While the StandardModel prediction for the
ρ parameter is not affected by the uncertainty in ∆α

(5)
had(M

2
Z) the uncertainty on the predic-

tion of sin2 θlept
eff within the StandardModel due to the uncertainty on ∆α

(5)
had(M

2
Z) is nearly as

large as the accuracy of the experimental measurement of sin2 θlept
eff . The present error in the

effective electromagnetic coupling constant, δ∆α(M2
Z) = 35×10−5 [19], dominates the uncer-

tainty of the theoretical prediction of sin2θlept
eff , inducing an error δ(sin2θlept

eff ) ∼ 12×10−5 which
is not much smaller than the experimental value δ(sin2θlept

eff )EXP = 16 × 10−5 determined by
LEP-I and SLD [47]. This observation underlines the importance of a precise cross-section
measurement of electron-positron annihilation into hadrons at low centre-of-mass energies.

Moreover, as measurements of the effective EW mixing angle at a future linear collider
may improve its precision by one order of magnitude [53], a much smaller value of δ∆α(M2

Z)
will be required. It is therefore crucial to assess all viable options to further reduce this
uncertainty.
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δ∆α
(5)
had × 105 δ(sin2θlept

eff )× 105 Request on R

35 12.5 Present

7 2.5 δR/R ∼ 1% for
√
s ≤MJ/ψ

5 1.8 δR/R ∼ 1% for
√
s ≤MΥ

Table 2: Values of the uncertainties δ∆α(5)
had (first column) and the errors induced by these

uncertainties on the theoretical SM prediction for sin2θlept
eff (second column). The third column

indicates the corresponding requirements on the R measurement.

Tab. 2 (from Ref. [34][54]) shows that an uncertainty δ∆α
(5)
had ∼ 5 × 10−5, needed for

precision physics at a future linear collider, requires the measurement of the hadronic cross
section with a precision of O(1%) from threshold up to the Υ peak.

In the SM the Higgs mass mH is the only relevant unknown parameter and by con-
fronting the calculated with the experimentally determined value of sin2 Θi one obtains the
important indirects constraints on the Higgs mass. The uncertainty δ∆α thus obscure in
particular the indirect bounds on the Higgs mass obtained from electroweak precision mea-
surements. As we mentioned in section 2 the current uncertainty in 1.05 − −2.0 GeV enrgy
region is 15%. Improving the precision of measurements from 15% (Fig. 1) to 5% would
change the total uncertainty on ∆α

(5)
had(M

2
Z) from 0.00035 to 0.00027. The change in the fitted

value of the Higgs mass would be small. However, the change Rhad by ±1σ in this c.m.s.
energy region would shift the central value of the fitted Higgs mass by +16

−9 GeV. Therefore
more precise measurements in this c.m.s. energy region are important.

The importance of the external ∆α
(5)
had(M

2
Z) = 0.02758 ± 0.00035[19] determination for

the constraint on mH is shown in Figure 7. Without the external ∆α
(5)
had(M

2
Z) constraint, the

fit results are ∆α
(5)
had(M

2
Z) = 0.0298+0.0010

−0.0017 and mH = 29+77
−15 GeV, with a correlation of −0.88

between these two fit results.
The latest global fit of the LEP Electroweak Working Group, which employs the complete

set of EW observables, leads to the valuemH = 91+45
−32 GeV, with a 95% confidence level upper

limit of 186 GeV (see Fig. 8) [49]. This limit increases to 219 GeV when including the LEP-II
direct search lower limit of 114 GeV.
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[6] F.A. Berends and A. Böhm, in “High Energy Electron-Positron Physics”,
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J. F. de Trocóniz and F. J. Yuduráin, Phys. Rev. D65 093002 (2002) (hep-ph /0107318);
Phys. Rev. D71 073008 (2005) (hep-ph /0402285).

[45] The LEP Collaborations, the LEP Electroweak Working Group, and the SLD Heavy
Flavor and Electroweak Group, CERN-EP/2001-021 (hep-ex/0103048).

[46] B. Pietrzyk, Nucl. Phys. B(Proc. Suppl.) 162 18 (2006);

[47] The LEP Collaborations, the LEP Electroweak Working Group, and the SLD Heavy
Flavor and Electroweak Group, Phys. Rep. 427 257 (2006) (hep-ex/0509008).

[48] The LEP Collaborations, the LEP Electroweak Working Group, hep-ex/0511027.

[49] The LEP Collaborations, the LEP Electroweak Working Group, hep-ex/0612054.

[50] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 61 1815 (1988).

[51] T. van Ritbergen and R. G. Stuart, Phys. Rev. Lett. 82 488 (1999).

[52] F. Jegerlehner, in Testing the Standard Model, eds. by M. Cvetič and P. Langacker, World
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Figure 1: Rhad including resonances. Measurements are shown with statistical errors. The
relative uncertainty assigned to our parametrization is shown as band and given with num-
bers at the bottom.
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Figure 2: Relative contributions to ∆α
(5)
had(M

2
Z) in magnitude and uncertainty from refer-

ence [46]
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Figure 3: Comparison of some estimates of ∆α
(5)
had(M

2
Z). Estimates based on dispersion in-

tegration of the experimental data are shown with red solid dot and estimates relying on
additional theoretical assumptions shown as black solid dot.
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Figure 4: A compilation of the presently available experimental hadronic e+e−–annihilation
data
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a theory based on electroweak Born-level formulae and QED with running α is shown as
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tion ∆α

(5)
had(M

2
Z). The same uncertainty also affects the StandardModel prediction, shown

as the shaded region drawn for fixed ∆α
(5)
had(M

2
Z) while mt and mH are varied in the ranges
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