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I. INTRODUCTION

In the past years many new excited charmed baryon states have been discovered by BaBar,
Belle and CLEO. In particular, B factories have provided a very rich source of charmed baryons
both from B decays and from the continuum e+e− → cc̄. A new chapter for the charmed baryon
spectroscopy is opened by the rich mass spectrum and the relatively narrow widths of the excited
states. Experimentally and theoretically, it is important to identify the quantum numbers of these
new states and understand their properties. Since the pseudoscalar mesons involved in the strong
decays of charmed baryons are soft, the charmed baryon system offers an excellent ground for
testing the ideas and predictions of heavy quark symmetry of the heavy quark and chiral symmetry
of the light quarks.

The observation of the lifetime differences among the charmed mesons D+, D0 and charmed
baryons is very interesting since it was realized very early that the naive parton model gives the
same lifetimes for all heavy particles containing a heavy quark Q, while experimentally, the lifetimes
of Ξ+

c and Ω0
c differ by a factor of six ! This implies the importance of the underlying mechanisms

such as W -exchange and Pauli interference due to the identical quarks produced in the heavy quark
decay and in the wavefunction of the charmed baryons. With the advent of heavy quark effective
theory, it was recognized in early nineties that nonperturbative corrections to the parton picture
can be systematically expanded in powers of 1/mQ. Within the QCD-based heavy quark expansion
framework, some phenomenological assumptions can be turned into some coherent and quantitative
statements and nonperturbative effects can be systematically studied.

Contrary to the significant progress made over the last 20 years or so in the studies of the heavy
meson weak decay, advancement in the arena of heavy baryons is relatively slow. Nevertheless, the
experimental measurements of the charmed baryon hadronic weak decays have been pushed to the
Cabibbo-suppressed level. Many new data emerged can be used to test a handful of phenomeno-
logical models available in the literature. Apart from the complication due to the presence of three
quarks in the baryon, a major disparity between charmed baryon and charmed meson decays is
that while the latter is usually dominated by factorizable amplitudes, the former receives sizable
nonfactorizable contributions from W -exchange diagrams which are not subject to color and he-
licity suppression. Besides the dynamical models, there are also some considerations based on the
symmetry argument and the quark diagram scheme.

The exclusive semileptonic decays of charmed baryons like Λ+
c → Λe+(µ+)νe, Ξ+

c → Ξ0e+νe and
Ξ0

c → Ξ−e+νe have been observed experimentally. Their rates depend on the heavy baryon to the
light baryon transition form factors. Experimentally, the only information available so far is the
form-factor ratio measured in the semileptonic decay Λc → Λeν̄.

Although radiative decays are well measured in the charmed meson sector, e.g. D∗ → Dγ and
D+

s → D+
s γ, only three of the radiative modes in the charmed baryon sector have been observed,

namely, Ξ′0c → Ξ0
cγ, Ξ′+c → Ξ+

c γ and Ω∗0c → Ω0
cγ. Charm flavor is conserved in these electromagnetic

charmed baryon decays. However, it will be difficult to measure the rates of these decays because
these states are too narrow to be experimentally resolvable. There are also charm-flavor-conserving
weak radiative decays such as Ξc → Λcγ and Ωc → Ξcγ. In these decays, weak radiative transitions
arise from the diquark sector of the heavy baryon whereas the heavy quark behaves as a “spectator”.
The charm-flavor-violating weak radiative decays, e.g., Λ+

c → Σ+γ and Ξ0
c → Ξ0γ, arise from the

W -exchange diagram accompanied by a photon emission from the external quark.
Two excellent review articles on charmed baryons can be found in [1, 2].
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II. PRODUCTION OF CHARMED BARYONS AT BESIII

Production and decays of the charmed baryons can be studied at BESIII once its center-of-
mass energy

√
s is upgraded to the level above 4.6 GeV. In order to estimate the number of

charmed baryon events produced at BESIII, it is necessary to know its luminosity, the cross section
σ(e+e− → cc̄) at the energies of interest and the fragmentation function of the c quark into the
charmed baryon. ..... ...........................................

III. SPECTROSCOPY

Charmed baryon spectroscopy provides an ideal place for studying the dynamics of the light
quarks in the environment of a heavy quark. The charmed baryon of interest contains a charmed
quark and two light quarks, which we will often refer to as a diquark. Each light quark is a triplet of
the flavor SU(3). Since 3×3 = 3̄+6, there are two different SU(3) multiplets of charmed baryons: a
symmetric sextet 6 and an antisymmetric antitriplet 3̄. For the ground-state s-wave baryons in the
quark model, the symmetries in the flavor and spin of the diquarks are correlated. Consequently,
the diquark in the flavor-symmetric sextet has spin 1, while the diquark in the flavor-antisymmetric
antitriplet has spin 0. When the diquark combines with the charmed quark, the sextet contains
both spin 1/2 and spin 3/2 charmed baryons. However, the antitriplet contains only spin 1/2 ones.
More specifically, the Λ+

c , Ξ+
c and Ξ0

c form a 3̄ representation and they all decay weakly. The Ω0
c ,

Ξ′+c , Ξ′0c and Σ++,+,0
c form a 6 representation; among them, only Ω0

c decays weakly. Note that we
follow the Particle Data Group (PDG) [3] to use a prime to distinguish the Ξc in the 6 from the
one in the 3̄.

The lowest-lying orbitally excited baryon states are the p-wave charmed baryons with their
quantum numbers listed in Table I. Although the separate spin angular momentum S` and orbital
angular momentum L` of the light degrees of freedom are not well defined, they are included for
guidance from the quark model. In the heavy quark limit, the spin of the charmed quark Sc and
the total angular momentum of the two light quarks J` = S` + L` are separately conserved. It is
convenient to use them to enumerate the spectrum of states. There are two types of L` = 1 orbital
excited charmed baryon states: states with the unit of orbital angular momentum between the
diquark and the charmed quark, and states with the unit of orbital angular momentum between
the two light quarks. The orbital wave function of the former (latter) is symmetric (antisymmetric)
under the exchange of two light quarks. To see this, one can define two independent relative
momenta k = 1

2(p1−p2) and K = 1
2(p1+p2−2pc) from the two light quark momenta p1, p2 and the

heavy quark momentum pc. (In the heavy quark limit, pc can be set to zero.) Denoting the quantum
numbers Lk and LK as the eigenvalues of L2

k and L2
K , the k-orbital momentum Lk describes relative

orbital excitations of the two light quarks, and the K-orbital momentum LK describes orbital
excitations of the center of the mass of the two light quarks relative to the heavy quark [1]. The
p-wave heavy baryon can be either in the (Lk = 0, LK = 1) K-state or the (Lk = 1, LK = 0)
k-state. It is obvious that the orbital K-state (k-state) is symmetric (antisymmetric) under the
interchange of p1 and p2.

The observed mass spectra and decay widths of charmed baryons are summarized in Table II (see
also Fig. 1). B factories have provided a very rich source of charmed baryons both from B decays
and from the continuum e+e− → cc̄. For example, several new excited charmed baryon states such
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TABLE I: The p-wave charmed baryons and their quantum numbers, where S` (J`) is the total spin
(angular momentum) of the two light quarks. The quantum number in the subscript labels J`. The
quantum number in parentheses is referred to the spin of the baryon. In the quark model, the upper
(lower) four multiplets have even (odd) orbital wave functions under the permutation of the two
light quarks. That is, L` for the former is referred to the orbital angular momentum between the
diquark and the charmed quark, while L` for the latter is the orbital angular momentum between
the two light quarks. The explicit quark model wave functions for p-wave charmed baryons can be
found in [4].

State SU(3) S` L` JP`
` State SU(3) S` L` JP`

`

Λc1(1
2 , 3

2) 3̄ 0 1 1− Ξc1(1
2 , 3

2) 3̄ 0 1 1−

Σc0(1
2) 6 1 1 0− Ξ′c0(

1
2) 6 1 1 0−

Σc1(1
2 , 3

2) 6 1 1 1− Ξ′c1(
1
2 , 3

2) 6 1 1 1−

Σc2(3
2 , 5

2) 6 1 1 2− Ξ′c2(
3
2 , 5

2) 6 1 1 2−

Σ̃c1(1
2 , 3

2) 6 0 1 1− Ξ̃′c1(
1
2 , 3

2) 6 0 1 1−

Λ̃c0(1
2) 3̄ 1 1 0− Ξ̃c0(1

2) 3̄ 1 1 0−

Λ̃c1(1
2 , 3

2) 3̄ 1 1 1− Ξ̃c1(1
2 , 3

2) 3̄ 1 1 1−

Λ̃c2(3
2 , 5

2) 3̄ 1 1 2− Ξ̃c2(3
2 , 5

2) 3̄ 1 1 2−

as Λc(2765)+,Λc(2880)+,Λc(2940)+, Ξc(2815),Ξc(2980) and Ξc(3077) have been measured recently
and they are not still not in the list of 2006 Particle Data Group [3]. By now, the JP = 1

2

+ and
1
2

− 3̄ states: (Λ+
c , Ξ+

c ,Ξ0
c), (Λc(2593)+, Ξc(2790)+,Ξc(2790)0), and JP = 1

2

+ and 3
2

+ 6 states:
(Ωc,Σc,Ξ′c), (Ω∗c ,Σ∗c ,Ξ′∗c ) are established. Notice that except for the parity of the lightest Λ+

c , none
of the other JP quantum numbers given in Table II has been measured. One has to rely on the
quark model to determine the JP assignments.

In the following we discuss some of the new excited charmed baryon states:

• The highest Λc(2940)+ was first discovered by BaBar in the D0p decay mode [5] and confirmed
by Belle in the decays Σ0

cπ
+,Σ++

c π− which subsequently decay into Λ+
c π+π− [6, 7]. The

state Λc(2880)+ first observed by CLEO [8] in Λ+
c π+π− was also seen by BaBar in the

D0p spectrum [5]. It was originally conjectured that, based on its narrow width, Λc(2880)+

might be a Λ̃+
c0(

1
2) state [8]. Recently, Belle has studied the experimental constraint on the

JP quantum numbers of Λc(2880)+ [6]. The angular analysis of Λc(2880)+ → Σ0,++
c π±

indicates that J = 5/2 is favored over J = 1/2 or 3/2, while the study of the resonant
structure of Λc(2880)+ → Λ+

c π+π− implies the existence of the Σ∗cπ intermediate states
and Γ(Σ∗cπ±)/Γ(Σcπ

±) = (24.1 ± 6.4+1.1
−4.5)%. This value is in agreement with heavy quark

symmetry predictions [9] and favors the 5/2+ over the 5/2− assignment.1 Therefore, it is not
a Λ̃+

c2(
5
2) state either. Since J` = 2, S` = 0, L = 2 for the diquark system of Λc(2880)+, this

1 Strictly speaking, the argument in favor of the 5/2+ assignment is reached in [6] by considering only
the F -wave contribution and neglecting the P -wave contribution to Λc(2880)+ → Σ∗cπ (see [10] for more
discussions).
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TABLE II: Mass spectra and decay widths (in units of MeV) of charmed baryons. Experimental val-
ues are taken from the Particle Data Group [3] except Λc(2880), Λc(2940), Ξc(2980)+,0, Ξc(3077)+,0

and Ωc(2768) for which we use the most recent available BaBar and Belle measurements.

State quark content JP Mass Width
Λ+

c udc 1
2

+ 2286.46± 0.14
Λc(2593)+ udc 1

2

− 2595.4± 0.6 3.6+2.0
−1.3

Λc(2625)+ udc 3
2

− 2628.1± 0.6 < 1.9
Λc(2765)+ udc ?? 2766.6± 2.4 50
Λc(2880)+ udc 5

2

+ 2881.5± 0.3 5.5± 0.6
Λc(2940)+ udc ?? 2938.8± 1.1 13.0± 5.0
Σc(2455)++ uuc 1

2

+ 2454.02± 0.18 2.23± 0.30
Σc(2455)+ udc 1

2

+ 2452.9± 0.4 < 4.6
Σc(2455)0 ddc 1

2

+ 2453.76± 0.18 2.2± 0.4
Σc(2520)++ uuc 3

2

+ 2518.4± 0.6 14.9± 1.9
Σc(2520)+ udc 3

2

+ 2517.5± 2.3 < 17
Σc(2520)0 ddc 3

2

+ 2518.0± 0.5 16.1± 2.1
Σc(2800)++ uuc ?? 2801+4

−6 75+22
−17

Σc(2800)+ udc ?? 2792+14
−5 62+60

−40

Σc(2800)0 ddc ?? 2802+4
−7 61+28

−18

Ξ+
c usc 1

2

+ 2467.9± 0.4
Ξ0

c dsc 1
2

+ 2471.0± 0.4
Ξ′+c usc 1

2

+ 2575.7± 3.1
Ξ′0c dsc 1

2

+ 2578.0± 2.9
Ξc(2645)+ usc 3

2

+ 2646.6± 1.4 < 3.1
Ξc(2645)0 dsc 3

2

+ 2646.1± 1.2 < 5.5
Ξc(2790)+ usc 1

2

− 2789.2± 3.2 < 15
Ξc(2790)0 dsc 1

2

− 2791.9± 3.3 < 12
Ξc(2815)+ usc 3

2

− 2816.5± 1.2 < 3.5
Ξc(2815)0 dsc 3

2

− 2818.2± 2.1 < 6.5
Ξc(2980)+ usc ?? 2971.1± 1.7 25.2± 3.0
Ξc(2980)0 dsc ?? 2977.1± 9.5 43.5
Ξc(3077)+ usc ?? 3076.5± 0.6 6.2± 1.1
Ξc(3077)0 dsc ?? 3082.8± 2.3 5.2± 3.6

Ω0
c ssc 1

2

+ 2697.5± 2.6
Ωc(2768)0 ssc 3

2

+ 2768.3± 3.0
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FIG. 1: Charmed baryons and some of their orbital excitations [3].

is the first observation of a d-wave charmed baryon. It is interesting to notice that, based on
the diquark idea, the assignment JP = 5/2+ has already been predicted in [11] for the state
Λc(2880) before the Belle experiment. As for Λc(2980)+, it was recently argued that it is an
exotic molecular state of D∗0 and p [12].

• The new charmed strange baryons Ξc(2980)+ and Ξc(3077)+ that decay into Λ+
c K−π+

were first observed by Belle [13] and confirmed by BaBar [14]. In the recent BaBar
measurement [14], the Ξc(2980)+ is found to decay resonantly through the intermediate
state Σc(2455)++K− with 4.9 σ significance and non-resonantly to Λ+

c K−π+ with 4.1 σ

significance. With 5.8 σ significance, the Ξc(3077)+ is found to decay resonantly through
Σc(2455)++K−, and with 4.6 σ significance, it is found to decay through Σc(2520)++K−.
The significance of the signal for the non-resonant decay Ξc(3077)+ → Λ+

c K−π+ is 1.4 σ.

• The highest isotriplet charmed baryons Σc(2800)++,+,0 decaying into Λ+
c π were first measured

by Belle [15]. They are most likely to be the JP = 3/2− Σc2 states because the Σc2(3
2) baryon

decays principally into the Λcπ system in a D-wave, while Σc1(3
2) decays mainly into the two

pion system Λcππ. The state Σc0(1
2) can decay into Λcπ in an S-wave, but it is very broad

with width of order 406 MeV [10]. Experimentally, it will be very difficult to observe it.

• The new 3/2+ Ωc(2768) was recently observed by BaBar in the electromagnetic decay
Ωc(2768) → Ωcγ [16]. With this new observation, the 3/2+ sextet is finally completed.

• Evidence of double charm states has been reported by SELEX in Ξcc(3519)+ → Λ+
c K−π+

[17]. Further observations of Ξ++
cc → Λ+

c K−π+π+ and Ξ+
cc → pD+K− were also announced

by SELEX [18]. However, none of the double charm states discovered by SELEX has been
confirmed by FOCUS, BaBar [19] and Belle [7] despite the 106 Λc events produced in B

factories versus 1630 Λc events observed at SELEX.
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Charmed baryon spectroscopy has been studied extensively in various models. The interested
readers are referred to [20] for further references. In heavy quark effective theory, the mass splittings
between spin-3

2 and spin-1
2 sextet charmed baryon multiplets are governed by the chromomagnetic

interactions so that

mΣ∗c −mΣc = mΞ′∗c −mΞ′c = mΩ∗c −mΩc , (3.1)

up to corrections of 1/mc. This relation is borne out by experiment: mΣ∗+c
− mΣ+

c
= 64.6 ± 2.3

MeV, mΞ′∗+c
−mΞ′+c = 70.9± 3.4 MeV and mΩ∗c −mΩc = 70.8± 1.5 MeV.

IV. STRONG DECAYS

Due to the rich mass spectrum and the relatively narrow widths of the excited states, the
charmed baryon system offers an excellent ground for testing the ideas and predictions of heavy
quark symmetry and light flavor SU(3) symmetry. The pseudoscalar mesons involved in the strong
decays of charmed baryons such as Σc → Λcπ are soft. Therefore, heavy quark symmetry of the
heavy quark and chiral symmetry of the light quarks will have interesting implications for the
low-energy dynamics of heavy baryons interacting with the Goldstone bosons.

The strong decays of charmed baryons are most conveniently described by the heavy hadron
chiral Lagrangians in which heavy quark symmetry and chiral symmetry are incorporated [21, 22].
The Lagrangian involves two coupling constants g1 and g2 for P -wave transitions between s-wave
and s-wave baryons [21], six couplings h2−h7 for the S-wave transitions between s-wave and p-wave
baryons, and eight couplings h8−h15 for the D-wave transitions between s-wave and p-wave baryons
[4]. The general chiral Lagrangian for heavy baryons coupling to the pseudoscalar mesons can be
expressed compactly in terms of superfields. We will not write down the relevant Lagrangians here;
instead the reader is referred to Eqs. (3.1) and (3.3) of [4]. Nevertheless, we list some of the partial
widths derived from the Lagrangian [4]:

Γ(Σ∗c → Σcπ) =
g2
1

2πf2
π

mΣc

mΣ∗c
p3

π, Γ(Σc → Λcπ) =
g2
2

2πf2
π

mΛc

mΣc

p3
π,

Γ(Λc1(1/2) → Σcπ) =
h2

2

2πf2
π

mΣc

mΛc1

E2
πpπ, Γ(Σc0(1/2) → Λcπ) =

h2
3

2πf2
π

mΛc

mΣc0

E2
πpπ,

Γ(Σc1(1/2) → Σcπ) =
h2

4

4πf2
π

mΣc

mΣc1

E2
πpπ, Γ(Σ̃c1(1/2) → Σcπ) =

h2
5

4πf2
π

mΣc

mΣ̃c1

E2
πpπ, (4.1)

Γ(Ξ̃c0(1/2) → Ξcπ) =
h2

6

2πf2
π

mΞc

mΞ̃c0

E2
πpπ, Γ(Λ̃c1(1/2) → Σcπ) =

h2
7

2πf2
π

mΣc

mΛ̃c1

E2
πpπ,

where pπ is the pion’s momentum and fπ = 132 MeV. Unfortunately, the decay Σ∗c → Σcπ is
kinematically prohibited since the mass difference between Σ∗c and Σc is only of order 65 MeV.
Consequently, the coupling g1 cannot be extracted directly from the strong decays of heavy baryons.

A. Strong decays of s-wave charmed baryons

In the framework of heavy hadron chiral pertrubation theory (HHChPT), one can use some
measurements as input to fix the coupling g2 which, in turn, can be used to predict the rates of
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other strong decays. We shall use Σc → Λcπ as input [3]

Γ(Σ++
c ) = Γ(Σ++

c → Λ+
c π+) = 2.23± 0.30MeV. (4.2)

¿From which we obtain

|g2| = 0.605+0.039
−0.043 , (4.3)

where we have neglected the tiny contributions from electromagnetic decays. Note that |g2| obtained
from Σ0

c → Λ+
c π− has the same central value as Eq. (4.3) except that the errors are slightly large.

If Σ∗c → Λcπ decays are employed as input, we will obtain |g2| = 0.57 ± 0.04 from Σ∗++
c → Λ+

c π+

and 0.60±0.04 from Σ∗0c → Λ+
c π−. Hence, it is preferable to use the measurement of Σ++

c → Λ+
c π+

to fix |g2|.2
As pointed out in [21], within in the framework of the non-relativistic quark model, the couplings

g1 and g2 can be related to gq
A, the axial-vector coupling in a single quark transition of u → d, via

g1 =
4
3
gq
A, g2 =

√
2
3
gq
A. (4.4)

Using gq
A = 0.75 which is required to reproduce the correct value of gN

A = 1.25, we obtain

g1 = 1, g2 = 0.61 . (4.5)

Hence, the quark model prediction is in good agreement with experiment, but deviates 2σ from the
large-Nc argument: |g2| = gN

A /
√

2 = 0.88 [24]. Applying (4.3) leads to (see also Table III)

Γ(Ξ
′∗+
c ) = Γ(Ξ

′∗+
c → Ξ+

c π0,Ξ0
cπ

+) =
g2
2

4πf2
π

(
1
2

mΞ+
c

mΞ′+c
p3

π +
mΞ0

c

mΞ′+c
p3

π

)
= (2.8± 0.4)MeV,

Γ(Ξ
′∗0
c ) = Γ(Ξ

′∗0
c → Ξ+

c π−,Ξ0
cπ

0) =
g2
2

4πf2
π

(
mΞ+

c

mΞ′0c
p3

π +
1
2

mΞ0
c

mΞ′0c
p3

π

)
= (2.9± 0.4)MeV. (4.6)

Note that we have neglected the effect of Ξc −Ξ′c mixing in calculations (for recent considerations,
see [29, 30]). Therefore, the predicted total width of Ξ

′∗+
c is in the vicinity of the current limit

Γ(Ξ
′∗+
c ) < 3.1 MeV [31].
It is clear from Table III that the predicted widths of Σ++

c and Σ0
c by HHChPT are in good

agreement with experiment. The strong decay width of Σc is smaller than that of Σ∗c by a factor of
∼ 7, although they will become the same in the limit of heavy quark symmetry. This is ascribed to
the fact that the pion’s momentum is around 90 MeV in the decay Σc → Λcπ while it is two times
bigger in Σ∗c → Λcπ. Since Σc states are significantly narrower than their spin-3/2 counterparts, this
explains why the measurement of their widths came out much later. Instead of using the data to fix
the coupling constants in a model-independent manner, there exist some calculations of couplings
in various models such as the relativistic light-front model [25], the relativistic three-quark model
[26] and light-cone sum rules [27, 32]. The results are summarized in Table III.

It is worth remarking that although the coupling g1 cannot be determined directly from the
strong decay such as Σ∗c → Σcπ, some information of g1 can be learned from the radiative decay
Ξ
′∗0
c → Ξ0

cγ, which is prohibited at tree level by SU(3) symmetry but can be induced by chiral
loops. A measurement of Γ(Ξ

′∗0
c → Ξ0

cγ) will yield two possible solutions for g1. Assuming the
validity of the quark model relations among different coupling constants, the experimental value of
g2 implies |g1| = 0.93± 0.16 [23] (see also Sec. VIII.A).

2 For previous efforts of extracting g2 from experiment using HHChPT, see [4, 23].
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TABLE III: Decay widths (in units of MeV) of s-wave charmed baryons. Theoretical predictions
of [25] are taken from Table IV of [26].

Decay Expt. HHChPT Tawfiq Ivanov Huang Albertus
[3] [10] et al. [25] et al. [26] et al. [27] et al. [28]

Σ++
c → Λ+

c π+ 2.23± 0.30 input 1.51± 0.17 2.85± 0.19 2.5 2.41± 0.07
Σ+

c → Λ+
c π0 < 4.6 2.6± 0.4 1.56± 0.17 3.63± 0.27 3.2 2.79± 0.08

Σ0
c → Λ+

c π− 2.2± 0.4 2.2± 0.3 1.44± 0.16 2.65± 0.19 2.4 2.37± 0.07
Σc(2520)++ → Λ+

c π+ 14.9± 1.9 16.7± 2.3 11.77± 1.27 21.99± 0.87 8.2 17.52± 0.75
Σc(2520)+ → Λ+

c π0 < 17 17.4± 2.3 8.6 17.31± 0.74
Σc(2520)0 → Λ+

c π− 16.1± 2.1 16.6± 2.2 11.37± 1.22 21.21± 0.81 8.2 16.90± 0.72
Ξc(2645)+ → Ξ0,+

c π+,0 < 3.1 2.8± 0.4 1.76± 0.14 3.04± 0.37 3.18± 0.10
Ξc(2645)0 → Ξ+,0

c π−,0 < 5.5 2.9± 0.4 1.83± 0.06 3.12± 0.33 3.03± 0.10

B. Strong decays of p-wave charmed baryons

Some of the S-wave and D-wave couplings of p-wave baryons to s-wave baryons can be deter-
mined. In principle, the coupling h2 is readily extracted from Λc(2593)+ → Σ0

cπ
+ with Λc(2593)+

identified as Λc1(1
2)+. However, since Λc(2593)+ → Σcπ is kinematically barely allowed, the finite

width effects of the intermediate resonant states will become important [33].
Pole contributions to the decays Λc(2593)+,Λc(2625)+ → Λ+

c ππ have been considered in [4,
27, 34] with the finite width effects included. The intermediate states of interest are Σc and Σ∗c
poles. The resonant contribution arises from the Σc pole, while the non-resonant term receives a
contribution from the Σ∗c pole. (Since Λc(2593)+,Λc(2625)+ → Λ∗cπ are not kinematically allowed,
the Σ∗c pole is not a resonant contribution.) The decay rates thus depend on two coupling constants
h2 and h8. The decay rate for the process Λ+

c1(2593) → Λ+
c π+π− can be calculated in the framework

of heavy hadron chiral perturbation theory to be [10]

Γ(Λc(2593) → Λ+
c ππ) = 14.48h2

2 + 27.54h2
8 − 3.11h2h8,

Γ(Λc(2625) → Λ+
c ππ) = 0.648h2

2 + 0.143× 106h2
8 − 28.6h2h8. (4.7)

It is clear that the limit on Γ(Λc(2625)) gives an upper bound on h8 of order 10−3 (in units
of MeV−1), whereas the decay width of Λc(2593) is entirely governed by the coupling h2. This
indicates that the direct non-resonant Λ+

c ππ cannot be described by the Σ∗c pole alone. Identifying
the calculated Γ(Λc(2593) → Λ+

c ππ) with the resonant one, we find

|h2| = 0.427+0.111
−0.100 , |h8| ≤ 3.57× 10−3 . (4.8)

Assuming that the total decay width of Λc(2593) is saturated by the resonant Λ+
c ππ 3-body

decays, Pirjol and Yan obtained |h2| = 0.572+0.322
−0.197 and |h8| ≤ (3.50 − 3.68) × 10−3 MeV−1 [4].

Using the updated hadron masses and Γ(Λc(2593) → Λ+
c ππ),3 we find |h2| = 0.499+0.134

−0.100. Taking

3 The CLEO result Γ(Λc(2593)) = 3.9+2.4
−1.6 MeV [35] is used in [4] to fix h2.
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TABLE IV: Same as Table III except for p-wave charmed baryons [10].

Decay Expt. HHChPT Tawfiq Ivanov Huang Zhu
[3] [10] et al. [25] et al. [26] et al. [27] [32]

Λc(2593)+ → (Λ+
c ππ)R 2.63+1.56

−1.09 input 2.5
Λc(2593)+ → Σ++

c π− 0.65+0.41
−0.31 0.62+0.37

−0.26 1.47± 0.57 0.79± 0.09 0.55+1.3
−0.55 0.64

Λc(2593)+ → Σ0
cπ

+ 0.67+0.41
−0.31 0.67+0.40

−0.28 1.78± 0.70 0.83± 0.09 0.89± 0.86 0.86
Λc(2593)+ → Σ+

c π0 1.34+0.79
−0.55 1.18± 0.46 0.98± 0.12 1.7± 0.49 1.2

Λc(2625)+ → Σ++
c π− < 0.10 ≤ 0.028 0.44± 0.23 0.076± 0.009 0.013 0.011

Λc(2625)+ → Σ0
cπ

+ < 0.09 ≤ 0.028 0.47± 0.25 0.080± 0.009 0.013 0.011
Λc(2625)+ → Σ+

c π0 ≤ 0.040 0.42± 0.22 0.095± 0.012 0.013 0.011
Λc(2625)+ → Λ+

c ππ < 1.9 ≤ 0.21 0.11
Σc(2800)++ → Λcπ, Σ(∗)

c π 75+22
−17 input

Σc(2800)+ → Λcπ, Σ(∗)
c π 62+60

−40 input
Σc(2800)0 → Λcπ, Σ(∗)

c π 61+28
−18 input

Ξc(2790)+ → Ξ′0,+
c π+,0 < 15 7.7+4.5

−3.2

Ξc(2790)0 → Ξ′+,0
c π−,0 < 12 8.1+4.8

−3.4

Ξc(2815)+ → Ξ∗+,0
c π0,+ < 3.5 3.2+1.9

−1.3 2.35± 0.93 0.70± 0.04
Ξc(2815)0 → Ξ∗+,0

c π−,0 < 6.5 3.5+2.0
−1.4

into account the fact that the Σc and Σ∗c poles only describe the resonant contributions to the total
width of Λc(2593), we finally reach the h2 value given in (4.8). Taking into account the threshold (or
finite width) effect in the strong decay Λc(2593)+ → Λcππ, a slightly small coupling h2

2 = 0.24+0.23
−0.11

is obtained in [33]. For the spin-3
2 state Λc(2625), its decay is dominated by the three-body channel

Λ+
c ππ as the major two-body decay Σcπ is a D-wave one.

Some information on the coupling h10 cane be inferred from the strong decays of Λc(2800). As
noticed in passing, the states Σc(2800)++,+,0 are most likely to be Σc2(3

2). Assuming their widths
are dominated by the two-body modes Λcπ, Σcπ and Λ∗cπ, we have [4]

Γ
(

Σc2(
3
2
)++

)
≈ Γ

(
Σc2(

3
2
)++ → Λ+

c π+
)

+ Γ
(

Σc2(
3
2
)++ → Σ+

c π+
)

+ Γ
(

Σc2(
3
2
)++ → Σ∗+c π+

)

=
4h2

10

15πf2
π

mΛc

mΣc2

p5
c +

h2
11

10πf2
π

mΣc

mΣc2

p5
c +

h2
11

10πf2
π

mΣ∗c
mΣc2

p5
c , (4.9)

and similar expressions for Σc(2800)+ and Σc(2800)0. Using the quark model relation h2
11 = 2h2

10

[see also Eq. (4.12)] and the measured widths of Σc(2800)++,+,0 (Table II), we obtain

|h10| = (0.85+0.11
−0.08)× 10−3 MeV−1 . (4.10)

Since the state Λc1(3
2) is broader, even a small mixing of Λc2(3

2) with Λc1(3
2) could enhance the

decay width of the former [4]. In this case, the above value for h10 should be regarded as an upper
limit of |h10|. Using the quark model relation |h8| = |h10| (see Eq. (4.12) below), the calculated
partial widths of Λc(2625)+ are shown in Table IV.
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The Ξc(2790) and Ξc(2815) baryons form a doublet Ξc1(1
2 , 3

2). Ξc(2790) decays to Ξ′cπ, while
Ξc(2815) decays to Ξcππ, resonating through Ξ∗c , i.e. Ξc(2645). Using the coupling h2 obtained
(4.8) and the experimental observation that the Ξcππ mode in Ξc(2815) decays is consistent with
being entirely via Ξc(2645)π, the predicted Ξc(2790) and Ξc(2815) widths are shown in Table IV
and they are consistent with the current experimental limits.

Couplings other than h2 and h10 can be related to each other via the quark model. The S-wave
couplings between the s-wave and the p-wave baryons are related by [4]

|h3|
|h4| =

√
3

2
,

|h2|
|h4| =

1
2
,

|h5|
|h6| =

2√
3
,

|h5|
|h7| = 1 . (4.11)

The D-wave couplings satisfy the relations

|h8| = |h9| = |h10|, |h11|
|h10| =

|h15|
|h14| =

√
2,

|h12|
|h13| = 2,

|h14|
|h13| = 1 . (4.12)

The reader is referred to [4] for further details.

V. LIFETIMES

The lifetime differences among the charmed mesons D+, D0 and charmed baryons have been
studied extensively both experimentally and theoretically since late 1970s. It was realized very
early that the naive parton model gives the same lifetimes for all heavy particles containing a
heavy quark Q and that the underlying mechanism for the decay width differences and the lifetime
hierarchy of heavy hadrons comes mainly from the spectator effects like W -exchange and Pauli
interference due to the identical quarks produced in the heavy quark decay and in the charmed
baryons (for a review, see [2, 36, 37]). The spectator effects were expressed in 1980s in terms of
local four-quark operators by relating the total widths to the imaginary part of certain forward
scattering amplitudes [38–40]. (The spectator effects for charmed baryons were first studied in
[41].) With the advent of heavy quark effective theory (HQET), it was recognized in early 1990s
that nonperturbative corrections to the parton picture can be systematically expanded in powers
of 1/mQ [42, 43]. Subsequently, it was demonstrated that this 1/mQ expansion is applicable not
only to global quantities such as lifetimes, but also to local quantities, e.g. the lepton spectrum in
the semileptonic decays of heavy hadrons [44]. Therefore, the above-mentioned phenomenological
work in 1980s acquired a firm theoretical footing in 1990s, namely the heavy quark expansion
(HQE), which is a generalization of the operator product expansion (OPE) in 1/mQ. Within this
QCD-based framework, some phenomenological assumptions can be turned into some coherent and
quantitative statements and nonperturbative effects can be systematically studied.

Based on the OPE approach for the analysis of inclusive weak decays, the inclusive rate of the
charmed baryon is schematically represented by

Γ(Bc → f) =
G2

F m5
c

192π3
VCKM

(
A0 +

A2

m2
c

+
A3

m3
c

+O(
1

m4
c

)
)

. (5.1)

The A0 term comes from the c quark decay and is common to all charmed hadrons. There is no
linear 1/mQ corrections to the inclusive decay rate due to the lack of gauge-invariant dimension-
four operators [42, 45], a consequence known as Luke’s theorem [46]. Nonperturbative corrections
start at order 1/m2

Q and they are model independent. Spectator effects in inclusive decays due to
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the Pauli interference and W -exchange contributions account for 1/m3
c corrections and they have

two eminent features: First, the estimate of spectator effects is model dependent; the hadronic
four-quark matrix elements are usually evaluated by assuming the factorization approximation for
mesons and the quark model for baryons. Second, there is a two-body phase-space enhancement
factor of 16π2 for spectator effects relative to the three-body phase space for heavy quark decay.
This implies that spectator effects, being of order 1/m3

c , are comparable to and even exceed the
1/m2

c terms.
The lifetimes of charmed baryons are measured to be [3]

τ(Λ+
c ) = (200± 6)× 10−15s, τ(Ξ+

c ) = (442± 26)× 10−15s,

τ(Ξ0
c) = (112+13

−10)× 10−15s, τ(Ω0
c) = (69± 12)× 10−15s. (5.2)

As we shall see below, the lifetime hierarchy τ(Ξ+
c ) > τ(Λ+

c ) > τ(Ξ0
c) > τ(Ω0

c) is qualitatively
understandable in the OPE approach but not quantitatively.

In general, the total width of the charmed baryon Bc receives contributions from inclusive
nonleptonic and semileptonic decays: Γ(Bc) = ΓNL(Bc) + ΓSL(Bc). The nonleptonic contribution
can be decomposed into

ΓNL(Bc) = Γdec(Bc) + Γann(Bc) + Γint
− (Bc) + Γint

+ (Bc), (5.3)

corresponding to the c-quark decay, the W -exchange contribution, destructive and constructive
Pauli interferences. It is known that the inclusive decay rate is governed by the imaginary part of
an effective nonlocal forward transition operator T . Therefore, Γdec corresponds to the imaginary
part of Fig. 2(a) sandwiched between the same Bc states. At the Cabibbo-allowed level, Γdec

represents the decay rate of c → sud̄, and Γann denotes the contribution due to the W -exchange
diagram cd → us. The interference Γint− (Γint

+ ) arises from the destructive (constructive) interference
between the u (s) quark produced in the c-quark decay and the spectator u (s) quark in the charmed
baryon Bc. Notice that the constructive Pauli interference is unique to the charmed baryon sector
as it does not occur in the bottom baryon sector. From the quark content of the charmed baryons
(see Table II), it is clear that at the Cabibbo-allowed level, the destructive interference occurs in
Λ+

c and Ξ+
c decays, while Ξ+

c ,Ξ0
c and Ω0

c can have Γint
+ . Since Ω0

c contains two s quarks, it is natural
to expect that Γint

+ (Ω0
c) À Γint

+ (Ξc). W -exchange occurs only for Ξ0
c and Λ+

c at the same Cabibbo-
allowed level. In the heavy quark expansion approach, the above-mentioned spectator effects can
be described in terms of the matrix elements of local four-quark operators.

Within this QCD-based heavy quark expansion approach, some phenomenological assumptions
can be turned into some coherent and quantitative statements and nonperturbative effects can be
systematically studied. To begin with, we write down the general expressions for the inclusive
decay widths of charmed hadrons. Under the heavy quark expansion, the inclusive nonleptonic
decay rate of a charmed baryon Bc is given by [42, 43]

ΓNL(Bc) =
G2

F m5
c

192π3
Nc VCKM

1
2mBc

{ (
c2
1 + c2

2 +
2c1c2

Nc

) [
I0(x, 0, 0)〈Bc|c̄c|Bc〉

− 1
m2

c

I1(x, 0, 0)〈Bc|c̄σ ·Gc|Bc〉
]
− 4

m2
c

2c1c2

Nc
I2(x, 0, 0)〈Bc|c̄σ ·Gc|Bc〉

}

+
1

2mBc

〈Bc|Lspec|Bc〉+O
(

1
m4

c

)
, (5.4)
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FIG. 2: Contributions to nonleptonic decay rates of charmed baryons from four-quark operators: (a)
c-quark decay, (b) W -exchange, (c) destructive Pauli interference and (d) constructive interference.

where σ ·G = σµνG
µν , x = (ms/mc)2, Nc is the number of colors, c1, c2 are Wilson coefficient

functions, Nc = 3 is the number of color and VCKM takes care of the relevant CKM matrix elements.
In the above equation, I0,1,2 are phase-space factors

I0(x, 0, 0) = (1− x2)(1− 8x + x2)− 12x2 lnx,

I1(x, 0, 0) =
1
2
(2− x

d

dx
)I0(x, 0, 0) = (1− x)4,

I2(x, 0, 0) = (1− x)3, (5.5)

for c → sud̄ transition.
In heavy quark effective theory, the two-body matrix element 〈Bc|c̄c|Bc〉 in Eq. (5.4) can be

recast to
〈Bc|c̄c|Bc〉

2mBc

= 1− KH

2m2
c

+
GH

2m2
c

, (5.6)

with

KH ≡ − 1
2mBc

〈Bc|c̄(iD⊥)2c|Bc〉 = −λ1,

GH ≡ 1
2mBc

〈Bc|c̄1
2
σ ·Gc|Bc〉 = dHλ2, (5.7)

where dH = 0 for the antitriplet baryon and dH = 4 for the spin-1
2 sextet baryon. It should be

stressed that the expression (5.6) is model independent and it contains nonperturbative kinetic
and chromomagnetic effects which are usually absent in the quark model calculations. The non-
perturbative HQET parameters λ1 and λ2 are independent of the heavy quark mass. Numerically,
we shall use λbaryon

1 = −(0.4 ± 0.2)GeV2 [47] and λbaryon
2 = 0.055GeV2 for charmed baryons [48].

Spectator effects in inclusive decays of charmed hadrons are described by the dimension-six four-
quark operators Lspec in Eq. (5.4) at order 1/m3

c . Its complete expression can be found in, for
example, Eq. (2.4) of [48].

For inclusive semileptonic decays, there is an additional spectator effect in charmed-baryon
semileptonic decay originating from the Pauli interference of the s quark for charmed baryons Ξc

and Ωc [49]. The general expression of the inclusive semileptonic widths is given by

ΓSL(Bc) =
G2

F m5
c

192π3
VCKM

η(x, x`, 0)
2mBc

[
I0(x, 0, 0)〈Bc|c̄c|Bc〉 − 1

m2
c

I1(x, 0, 0)〈Bc|c̄σ ·Gc|Bc〉
]

− G2
F m2

c

6π
|Vcs|2 1

2mBc

(1− x)2
[
(1 +

x

2
)(c̄s)(s̄c)− (1 + 2x)c̄(1− γ5)ss̄(1 + γ5)c

]
, (5.8)
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where η(x, x`, 0) with x` = (m`/mQ)2 is the QCD radiative correction to the semileptonic decay
rate and its general analytic expression is given in [50]. Since both nonleptonic and semileptonic
decay widths scale with the fifth power of the charmed quark mass, it is very important to fix the
value of mc. It is found that the experimental values for D+ and D0 semileptonic widths [3] can be
fitted by the quark pole mass mc = 1.6 GeV. Taking ms = 170 MeV, we obtain the charmed-baryon
semileptonic decay rates

Γ(Λc → Xeν̄) = Γ(Ξc → Xeν̄) = 1.533× 10−13GeV,

Γ(Ωc → Xeν̄) = 1.308× 10−13GeV. (5.9)

The prediction (5.9) for the Λc baryon is in good agreement with experiment [3]

Γ(Λc → Xeν̄)expt = (1.480± 0.559)× 10−13GeV. (5.10)

We shall see beolw that the Pauli interference effect in the semileptonic decays of Ξc and Ωc can
be very significant, in particular for the latter.

The baryon matrix element of the four-quark operator 〈Bc|(c̄q1)(q̄2q3)|Bc〉 with (q̄1q2) = q̄1γµ(1−
γ5)q2 is customarily evaluated using the quark model. In the non-relativistic quark model (for early
related studies, see [38, 39]), the matrix element is governed by the charmed baryon wave function at
origin, |ψBc

cq (0)|2, which can be related to the charmed meson wave function |ψD
cq(0)|2. For example,

the hyperfine splittings between Σ∗c and Σc, and between D∗ and D separately yield [51]

|ψΛc
cq (0)|2 = |ψΣc

cq (0)|2 =
4
3

mΣ∗c −mΣc

mD∗ −mD
|ψD

cq̄(0)|2. (5.11)

This relation is supposed to be robust as |ψcq(0)|2 determined in this manner does not depend on
the strong coupling αs and the light quark mass mq directly. Defining

|ψBc
cq (0)|2 = rBc |ψD

cq(0)|2, (5.12)

we have

rΛc =
4
3

mΣ∗c −mΣc

mD∗ −mD
, rΞc =

4
3

mΞ∗c −mΞ′c
mD∗ −mD

, rΩc =
4
3

mΩ∗c −mΩc

mD∗ −mD
. (5.13)

In terms of the parameter rBc |ψD
cq(0)|2 we have [48]

Γann(Λc) =
G2

F m2
c

π
rΛc(1− x)2

(
η(c2

1 + c2
2)− 2c1c2

)
|ψD(0)|2,

Γint
− (Λc) = −G2

F m2
c

4π
rΛc(1− x)2(1 + x)

(
ηc2

1 − 2c1c2 −Ncc
2
2

)
|ψD(0)|2,

Γann(Ξc)/rΞc = Γann(Λc)/rΛc , Γint
− (Ξ+

c )/rΞc = Γint
− (Λc)/rΛc ,

Γint
+ (Ξc) = −G2

F m2
c

4π
rΞc(1− x2)(1 + x)

(
ηc2

2 − 2c1c2 −Ncc
2
1

)
|ψD(0)|2,

Γint
+ (Ωc) = −G2

F m2
c

6π
rΩc(1− x2)(5 + x)

(
ηc2

2 − 2c1c2 −Ncc
2
1

)
|ψD(0)|2,

Γann(Ωc) = 6
G2

F m2
c

π
rΩc(1− x2)

(
η(c2

1 + c2
2)− 2c1c2

)
|ψD(0)|2,

Γint(Ξc → Xeν̄) =
G2

F m2
c

4π
rΞc(1− x2)(1 + x)|ψD(0)|2,

Γint(Ωc → Xeν̄) =
G2

F m2
c

6π
rΩc(1− x2)(5 + x)|ψD(0)|2, (5.14)
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where the parameter η is introduced via

〈Bc|(c̄c)(q̄q)|Bc〉 = −η〈Bc|(c̄q)(q̄c)|Bc〉, (5.15)

so that η = 1 in the valence quark approximation. In the zero light quark mass limit (x = 0)
and in the valence quark approximation, the reader can check that results of (5.14) are in agree-
ment with those obtained in [38, 39, 52] except the Cabibbo-suppressed W -exchange contribution
to Ω0

c , Γann(Ωc). We have a coefficient of 6 arising from the matrix element 〈Ωc|(c̄s)(s̄c)|Ωc〉 =
−6|ψΩc

cs (0)|2(2mΩc) [48], while the coefficient is claimed to be 10
3 in [52].

Neglecting the small difference between rΛc , rΞc and rΩc and setting x = 0, the inclusive non-
leptonic rates of charmed baryons in the valence quark approximation have the expressions:

ΓNL(Λ+
c ) = Γdec(Λ+

c ) + cos2C Γann + Γint
− + sin2

C Γint
+ ,

ΓNL(Ξ+
c ) = Γdec(Ξ+

c ) + sin2
C Γann + Γint

− + cos2C Γint
+ ,

ΓNL(Ξ0
c) = Γdec(Ξ0

c) + Γann + Γint
− + Γint

+ ,

ΓNL(Ω0
c) = Γdec(Ω0

c) + 6 sin2
C Γann +

10
3

cos2C Γint
+ , (5.16)

with θC being the Cabibbo angle.
Assuming the D meson wavefunction at the origin squared |ψD

cq̄(0)|2 being given by 1
12f2

DmD, we
obtain |ψΛc(0)|2 = 7.5× 10−3GeV3 for fD = 220 MeV.4 To proceed to the numerical calculations,
we use the Wilson coefficients c1(µ) = 1.35 and c2(µ) = −0.64 evaluated at the scale µ = 1.25
GeV. Since η = 1 in the valence-quark approximation and since the wavefunction squared ratio
r is evaluated using the quark model, it is reasonable to assume that the NQM and the valence-
quark approximation are most reliable when the baryon matrix elements are evaluated at a typical
hadronic scale µhad. As shown in [54], the parameters η and r renormalized at two different scales
are related via the renormalization group equation, from which we obtain η(µ) ' 0.74η(µhad) ' 0.74
and r(µ) ' 1.36 r(µhad) [48].

The results of calculations are summarized in Table V. It is clear that the lifetime pattern

τ(Ξ+
c ) > τ(Λ+

c ) > τ(Ξ0
c) > τ(Ω0

c) (5.17)

is in accordance with experiment. This lifetime hierarchy is qualitatively understandable. The
Ξ+

c baryon is longest-lived among charmed baryons because of the smallness of W -exchange and
partial cancellation between constructive and destructive Pauli interferences, while Ωc is shortest-
lived due to the presence of two s quarks in the Ωc that renders the contribution of Γint

+ largely
enhanced. From Eq. (5.14) we also see that Γint

+ is always positive, Γint− is negative and that the
constructive interference is larger than the magnitude of the destructive one. This explains why
τ(Ξ+

c ) > τ(Λ+
c ). It is also clear from Table V that, although the qualitative feature of the lifetime

pattern is comprehensive, the quantitative estimates of charmed baryon lifetimes and their ratios
are still rather poor.

In [52], a much larger charmed baryon wave function at origin is employed. This is based on the
argument originally advocated in [37]. The physical charmed meson decay constant fD is related
to the asymptotic static value FD via

fD = FD

(
1− |µ|

mc
+O(

1
m2

c

)
)

. (5.18)

4 The recent CLEO measurement of D+ → µ+ν yields fD+ = 222.6± 16.7+2.8
−3.4 MeV [53].
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TABLE V: Various contributions to the decay rates (in units of 10−12 GeV) of charmed baryons.
The charmed meson wavefunction at the origin squared |ψD(0)|2 is taken to be 1

12f2
DmD. Experi-

mental values are taken from [3].

Γdec Γann Γint− Γint
+ ΓSL Γtot τ(10−13s) τexpt(10−13s)

Λ+
c 1.006 1.342 −0.196 0.323 2.492 2.64 2.00± 0.06

Ξ+
c 1.006 0.071 −0.203 0.364 0.547 1.785 3.68 4.42± 0.26

Ξ0
c 1.006 1.466 0.385 0.547 3.404 1.93 1.12+0.13

−0.10

Ω0
c 1.132 0.439 1.241 1.039 3.851 1.71 0.69± 0.12

It was argued in [37] that one should not use the physical value of fD when relating |ψBc(0)|2
to |ψD(0)|2 for reason of consistency since the widths have been calculated through order 1/m3

c

only. Hence, the part of fD which is not suppressed by 1/mc should not be taken into account.
However, if we use FD ∼ 2fD for the wave function |ψD(0)|2, we find that the predicted lifetimes
of charmed baryons become too short compared to experiment except Ω0

c . By contrast, using
|ψΛc(0)|2 = 2.62 × 10−2GeV3 and the so-called hybrid renormalization, lifetimes τ(Λ+

c ) = 2.39,
τ(Ξ+

c ) = 2.51, τ(Ξ0
c) = 0.96 and τ(Ω0

c) = 0.61 in units of 10−13s are obtained in [52]. They are in
better agreement with the data except Ξ+

c . The predicted ratio τ(Ξ+
c )/τ(Λ+

c ) = 1.05 is too small
compared to the experimental value of 2.21 ± 0.15. By inspecting Eq. (5.16), it seems to be very
difficult to enhance the ratio by a factor of 2.

In short, when the lifetimes of charmed baryons are analyzed within the framework of the
heavy quark expansion, the qualitative feature of the lifetime pattern is understandable, but a
quantitative description of charmed baryon lifetimes is still lack. This may be ascribed to the
following possibilities:

1. Unlike the semileptonic decays, the heavy quark expansion in inclusive nonleptonic decays
cannot be justified by analytic continuation into the complex plane and local duality has to
be assumed in order to apply the OPE directly in the physical region. The may suggest a
significant violation of quark-hadron local duality in the charm sector.

2. Since the c quark is not heavy enough, it casts doubts on the validity of heavy quark expansion
for inclusive charm decays. This point can be illustrated by the following example. It is
well known that the observed lifetime difference between the D+ and D0 is ascribed to the
destructive interference in D+ decays and/or the constructive W -exchange contribution to
D0 decays. However, there is a serious problem with the evaluation of the destructive Pauli
interference Γint(D+) in D+. A direct calculation analogous to Γint− (Bc) in the charmed
baryon sector indicates that Γint(D+) overcomes the c quark decay rate so that the resulting
nonleptonic decay width of D+ becomes negative [37, 55]. This certainly does not make
sense. This example clearly indicates that the 1/mc expansion in charm decay is not well
convergent and sensible, to say the least. It is not clear if the situation is improved even
after higher dimension terms are included.

3. To overcome the aforementioned difficulty with Γint(D+), it has been conjectured in [37] that
higher-dimension corrections amount to replacing mc by mD in the expansion parameter
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f2
DmD/m3

c , so that it becomes f2
D/m2

D. As a consequence, the destructive Pauli interference
will be reduced by a factor of (mc/mD)3. By the same token, the Pauli interference in
charmed baryon decay may also be subject to the same effect. Another way of alleviating
the problem is to realize that the usual local four-quark operators are derived in the heavy
quark limit so that the effect of spectator light quarks can be neglected. Since the charmed
quark is not heavy enough, it is very important, as stressed by Chernyak [55], to take into
account the nonzero momentum of spectator quarks in charm decay. In the framework of
heavy quark expansion, this spectator effect can be regarded as higher order 1/mc corrections.

4. One of the major theoretical uncertainties comes from the evaluation of the four-quark matrix
elements. One can hope that lattice QCD will provide a better handle on those quantities.

VI. HADRONIC WEAK DECAYS

Contrary to the significant progress made over the last 20 years or so in the studies of the heavy
meson weak decay, advancement in the arena of heavy baryons, both theoretical and experimental,
has been relatively slow. This is partly due to the smaller baryon production cross section and the
shorter lifetimes of heavy baryons. From the theoretical point of view, baryons being made out
of three quarks, in contrast to two quarks for mesons, bring along several essential complications.
First of all, the factorization approximation that the hadronic matrix element is factorized into
the product of two matrix elements of single currents and that the nonfactorizable term such as
the W -exchange contribution is negligible relative to the factorizable one is known empirically to
be working reasonably well for describing the nonleptonic weak decays of heavy mesons. However,
this approximation is a priori not directly applicable to the charmed baryon case as W -exchange
there, manifested as pole diagrams, is no longer subject to helicity and color suppression. This is
different from the naive color suppression of internal W -emission. It is known in the heavy meson
case that nonfactorizable contributions will render the color suppression of internal W -emission
ineffective. However, the W -exchange in baryon decays is not subject to color suppression even in
the absence of nonfactorizable terms. A simple way to see this is to consider the large-Nc limit.
Although the W -exchange diagram is down by a factor of 1/Nc relative to the external W -emission
one, it is compensated by the fact that the baryon contains Nc quarks in the limit of large Nc, thus
allowing Nc different possibilities for W exchange between heavy and light quarks [56]. That is,
the pole contribution can be as important as the factorizable one. The experimental measurement
of the decay modes Λ+

c → Σ0π+, Σ+π0 and Λ+
c → Ξ0K+, which do not receive any factorizable

contributions, indicates that W -exchange indeed plays an essential role in charmed baryon decays.
Second, there are more possibilities in drawing the quark daigram amplitudes as depicted in Fig. 3;
in general there exist two distinct internal W -emissions and several different W -exchange diagrams
which will be discussed in more detail shortly.

Historically, the two-body nonleptonic weak decays of charmed baryons were first studied by
utilizing the same technique of current algebra as in the case of hyperon decays [57]. However, the
use of the soft-meson theorem makes sense only if the emitted meson is of the pseudoscalar type
and its momentum is soft enough. Obviously, the pseudoscalar-meson final state in charmed bayon
decay is far from being “soft”. Therefore, it is not appropriate to make the soft meson limit. It
is no longer justified to apply current algebra to heavy-baryon weak decays, especially for s-wave
amplitudes. Thus one has to go back to the original pole model, which is nevertheless reduced to
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current algebra in the soft pseudoscalar-meson limit, to deal with nonfactorizable contributions.
The merit of the pole model is obvious: Its use is very general and is not limited to the soft
meson limit and to the pseudoscalar-meson final state. Of course, the price we have to pay is that
it requires the knowledge of the negative-parity baryon poles for the parity-violating transition.
This also explains why the theoretical study of nonleptonic decays of heavy baryons is much more
difficult than the hyperon and heavy meson decays.

The nonfactorizable pole contributions to hadronic weak decays of charmed baryons have been
studied in the literature [58–60]. In general, nonfactorizable s- and p-wave amplitudes for 1

2

+ →
1
2

+ + P (V ) decays (P : pseudoscalar meson, V : vector meson), for example, are dominated by
1
2

− low-lying baryon resonances and 1
2

+ ground-state baryon poles, respectively. However, the
estimation of pole amplitudes is a difficult and nontrivial task since it involves weak baryon matrix
elements and strong coupling constants of 1

2

+ and 1
2

− baryon states. This is the case in particular
for s-wave terms as we know very little about the 1

2

− states. As a consequence, the evaluation
of pole diagrams is far more uncertain than the factorizable terms. In short, W -exchange plays a
dramatic role in the charmed baryon case and it even dominates over the spectator contribution in
hadronic decays of Λ+

c and Ξ0
c [61].

Since the light quarks of the charmed baryon can undergo weak transitions, one can also have
charm-flavor-conserving weak decays, e.g., Ξc → Λcπ and Ωc → Ξcπ, where the charm quark
behaves as a spectator. This special class of weak decays usually can be calculated more reliably
than the conventional charmed baryon weak decays.

A. Quark-diagram scheme

Besides dynamical model calculations, it is useful to study the nonleptonic weak decays in a way
which is as model independent as possible. The two-body nonleptonic decays of charmed baryons
have been analyzed in terms of SU(3)-irreducible-representation amplitudes [62, 63]. However, the
quark-diagram scheme (i.e., analyzing the decays in terms of quark-diagram amplitudes) has the
advantage that it is more intuitive and easier for implementing model calculations. It has been
successfully applied to the hadronic weak decays of charmed and bottom mesons [64, 65]. It has
provided a framework with which we not only can do the least-model-dependent data analysis and
give predictions but also make evaluations of theoretical model calculations.

A general formulation of the quark-diagram scheme for the nonleptonic weak decays of charmed
baryons has been given in [66] (see also [67]). The general quark diagrams shown in Fig. 3 are:
the external W -emission tree diagram T , internal W -emission diagrams C and C ′, W -exchange
diagrams E1, E2 and E′ (see Fig. 2 of [66] for notation and for details). There are also penguin-
type quark diagrams which are presumably negligible in charm decays due to GIM cancellation.
The quark diagram amplitudes T, C, C ′ · · · etc. in each type of hadronic decays are in general not
the same. For octet baryons in the final state, each of the W -exchange amplitudes has two more
independent types: the symmetric and the antisymmetric, for example, E1A, E2A, E2S , E′

A and
E′

S [66]. The antiquark produced from the charmed quark decay c → q1q2q̄3 in diagram C ′ can
combine with q1 or q2 to form an outgoing meson. Consequently, diagram C ′ contains factorizable
contributions but C does not. It should be stressed that all quark graphs used in this approach
are topological with all the strong interactions included, i.e. gluon lines are included in all possible
ways. Hence, they are not Feynman graphs. Moreover, final-state interactions are also classified
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FIG. 3: Quark diagrams for charmed baryon decays

in the same manner. A good example is the reaction D0 → K̄0φ, which can be produced via
final-state rescattering even in the absence of the W -exchange diagram. Then it was shown in [65]
that this rescattering diagram belongs to the generic W -exchange topology.

Since the two spectator light quarks in the heavy baryon are antisymmetrized in the antitriplet
charmed baryon Bc(3̄) and the wave function of the decuplet baryon B(10) is totally symmetric,
it is clear that factorizable amplitudes T and C ′ cannot contribute to the decays of type Bc(3̄) →
B(10) + M(8); it receives contributions only from the W -exchange and penguin-type diagrams
(see Fig. 1 of [66]). Examples are Λ+

c → ∆++K−,Σ∗+ρ0,Σ∗+η, Ξ∗0K+ and Ξ0
c → Σ∗+K̄0. They

can only proceed via W -exchange. Hence, the experimental observation of them implies that the
W -exchange mechanism plays a significant role in charmed baryon decays. The quark diagram
amplitudes for all two-body decays of (Cabibbo-allowed, singly suppressed and doubly suppressed)
Λ+

c ,Ξ+,0
c and Ω0

c are listed in [66]. In the SU(3) limit, there exist many relations among various
charmed baryon decay amplitudes, see [66] for detail. For charmed baryon decays, there are only
a few decay modes which proceed through factorizable external or internal W -emission diagram,
namely, Cabibbo-allowed Ω0

c → Ω−π+(ρ+), Ξ∗0K̄0(K̄∗0) and Cabibbo-suppressed Λ+
c → pφ.

B. Dynamical model calculation

To proceed we first consider the Cabibbo-allowed decays Bc(1
2

+) → B(1
2

+)+P (V ). The general
amplitudes are

M [Bi(1/2+) → Bf (1/2+) + P ] = iūf (pf )(A + Bγ5)ui(pi), (6.1)

M [Bi(1/2+) → Bf (1/2+) + V ] = ūf (pf )ε∗µ[A1γµγ5 + A2(pf )µγ5 + B1γµ + B2(pf )µ]ui(pi),

where εµ is the polarization vector of the vector meson, A, (B,B1, B2) and A2 are s-wave, p-wave
and d-wave amplitudes, respectively, and A1 consists of both s-wave and d-wave ones. The QCD-
corrected weak Hamiltonian responsible for Cabibbo-allowed hadronic decays of charmed baryons
reads

HW =
GF√

2
VcsV

∗
ud(c1O1 + c2O2), (6.2)
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where O1 = (s̄c)(ūd) and O2 = (s̄d)(ūc) with (q̄1q2) ≡ q̄1γµ(1 − γ5)q2. ¿From the expression of
O1,2, it is clear that factorization occurs if the final-state meson is π+(ρ+) or K̄0(K̄∗0). Explicitly,

Afac(Bi → Bf + π+) = λa1fP (mi −mf )f1(m2
π),

Bfac(Bi → Bf + π+) = λa1fP (mi + mf )g1(m2
π),

Afac(Bi → Bf + K̄0) = λa2fP (mi −mf )f1(m2
K),

Bfac(Bi → Bf + K̄0) = λa2fP (mi + mf )g1(m2
K), (6.3)

and

Afac
1 (Bi → Bf + ρ+) = −λa1fρmρ[g1(m2

ρ) + g2(m2
ρ)(mi −mf )],

Afac
2 (Bi → Bf + ρ+) = −2λa1fρmρg2(m2

ρ),

Bfac
1 (Bi → Bf + ρ+) = λa1fρmρ[f1(m2

ρ)− f2(m2
ρ)(mi + mf )],

Bfac
2 (Bi → Bf + ρ+) = 2λa1fρmρf2(m2

ρ),

and similar expressions for Bi → Bf + K̄∗0, where λ = GF VcsV
∗
ud/
√

2, fi and gi are the form factors
defined by (q = pi − pf )

〈Bf (pf )|Vµ −Aµ|Bi(pi)〉 = ūf (pf )[f1(q2)γµ + if2(q2)σµνq
ν + f3(q2)qµ

−(g1(q2)γµ + ig2(q2)σµνq
ν + g3(q2)qµ)γ5]ui(pi). (6.4)

In the naive factorization approach, the coefficients a1 for the external W -emission amplitude
and a2 for internal W -emission are given by (c1 + c2

Nc
) and (c2 + c1

Nc
), respectively. However, we

have learned from charmed meson decays that the naive factorization approach never works for the
decay rate of color-suppressed decay modes, though it usually operates for color-allowed decays.
Empirically, it was learned in the 1980s that if the Fierz-transformed terms characterized by 1/Nc

are dropped, the discrepancy between theory and experiment is greatly improved [68]. This leads
to the so-called large-Nc approach for describing hadronic D decays [69]. Theoretically, explicit
calculations based on the QCD sum-rule analysis [70] indicate that the Fierz terms are indeed
largely compensated by the nonfactorizable corrections.

As the discrepancy between theory and experiment for charmed meson decays gets much im-
proved in the 1/Nc expansion method, it is natural to ask if this scenario also works in the baryon
sector? This issue can be settled down by the experimental measurement of the Cabibbo-suppressed
mode Λ+

c → pφ, which receives contributions only from the factorizable diagrams. As pointed out
in [58], the large-Nc predicted rate is in good agreement with the measured value. By contrast,
its decay rate prdicted by the naive factorization approximation is too small by a factor of 15.
Therefore, the 1/Nc approach also works for the factorizable amplitude of charmed baryon decays.
This also implies that the inclusion of nonfactorizable contributions is inevitable and necessary. If
nonfactorizable effects amount to a redefinition of the effective parameters a1, a2 and are universal
(i.e., channel-independent) in charm decays, then we still have a new factorization scheme with the
universal parameters a1, a2 to be determined from experiment. Throughout this paper, we will
thus treat a1 and a2 as free effective parameters.

At the hadronic level, the decay amplitudes for quark diagrams T and C ′are conventionally eval-
uated using the factorization approximation. How do we tackle with the remaining nonfactorizable
diagrams C, E1, E2, E′ ? One popular approach is to consider the contributions from all possible
intermediate states. Among all possible pole contributions, including resonances and continuum
states, one usually focuses on the most important poles such as the low-lying 1

2

+
, 1

2

− states, known
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FIG. 4: Pole diagrams for charmed baryon decay Bi → Bf + M .

as pole approximation. More specifically, the s-wave amplitude is dominated by the low-lying 1/2−

resonances and the p-wave one governed by the ground-state 1/2+ poles (see Fig. 4):

Anf = −
∑

B∗n(1/2−)

(
gBfBn∗P b

n∗i

mi −mn∗
+

b
fn∗gB

n∗ BiP

mf −mn∗

)
+ · · · ,

Bnf = −
∑

Bn

(
gBfBnP ani

mi −mn
+

a
fn

gBnBiP

mf −mn

)
+ · · · , (6.5)

where Anf and Bnf are the nonfactorizable s- and p-wave amplitudes of Bc → BP , respectively,
ellipses in Eq.(6.5) denote other pole contributions which are negligible for our purposes, and aij

as well as bi∗j are the baryon-baryon matrix elements defined by

〈Bi|HW |Bj〉 = ūi(aij − bijγ5)uj , 〈B∗i (1/2
−
)|Hpv

W
|Bj〉 = ibi∗j ūiuj , (6.6)

with bji∗ = −bi∗j . Evidently, the calculation of s-wave amplitudes is more difficult than the p-wave
owing to the troublesome negative-parity baryon resonances which are not well understood in the
quark model. In [58, 59], the form factors appearing in factorizable amplitudes and the strong
coupling constants and baryon transition matrix elements relevant to nonfactorizable contributions
are evaluated using the MIT bag model [71]. Two of the pole model calculations for branching
ratios [59, 60] are displayed in Table VI. The study of charmed baryon hadronic decays in [72] is
similar to [59, 60] except that the effect of W -exchange is parametrized in terms of the baryon wave
function at origin. Sharma and Verma [72] defined a parameter r = |ψBc(0)|2/|ψB(0)|2 and argued
that its value is close to 1.4 . A variant of the pole model has been considered in [73] in which the
effects of pole-model-induced SU(4) symmetry breaking in parity-conserving and parity-violating
amplitudes are studied.

Instead of decomposing the decay amplitude into products of strong couplings and two-body
weak transitions, Körner and Krämer [56] have analyzed the nonleptonic weak processes using the
spin-flavor structure of the effective Hamiltonian and the wave functions of baryons and mesons
described by the covariant quark model. The nonfactorizable amplitudes are then obtained in
terms of two wave function overlap parameters H2 and H3, which are in turn determined by fitting
to the experimental data of Λ+

c → pK̄0 and Λ+
c → Λπ+, respectively. Despite the absence of

first-principles calculation of the parameters H2 and H3, this quark model approach has fruitful
predictions for not only Bc → B + P , but also Bc → B + V, B∗(3/2+) + P and B∗(3/2+) + V

decays. Another advantage of this analysis is that each amplitude has one-to-one quark-diagram
interpretation. While the overlap integrals are treated as phenomenological parameters to be
determined from a fit to the data, Ivanov et al. [74] developed a microscopic approach to the
overlap integrals by specifying the form of the hadron-quark transition vertex including the explicit
momentum dependence of the Lorentz scalar part of this vertex.
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TABLE VI: Branching ratios of Cabibbo-allowed Bc → B+ P decays in various models. Results of
[56, 59, 60] have been normalized using the current world averages of charmed baryon lifetimes [3].
Branching ratios cited from [72] are for φη−η′ = −23◦ and r = 1.4 .

Decay Körner, Xu, Cheng, Ivanov Żenczykowski Sharma, Expt.
Krämer [56] Kamal [60] Tseng [59] et al. [74] [73] Verma [72] [3]

Λ+
c → Λπ+ input 1.62 0.88 0.79 0.54 1.12 0.90± 0.28

Λ+
c → Σ0π+ 0.32 0.34 0.72 0.88 0.41 1.34 0.99± 0.32

Λ+
c → Σ+π0 0.32 0.34 0.72 0.88 0.41 1.34 1.00± 0.34

Λ+
c → Σ+η 0.16 0.11 0.94 0.57 0.48± 0.17

Λ+
c → Σ+η′ 1.28 0.12 0.12 0.10

Λ+
c → pK̄0 input 1.20 1.26 2.06 1.79 1.64 2.3± 0.6

Λ+
c → Ξ0K+ 0.26 0.10 0.31 0.36 0.13 0.39± 0.14

Ξ+
c → Σ+K̄0 6.45 0.44 0.84 3.08 1.56 0.04

Ξ+
c → Ξ0π+ 3.54 3.36 3.93 4.40 1.59 0.53 0.55± 0.16a

Ξ0
c → ΛK̄0 0.12 0.37 0.27 0.42 0.35 0.54 seen

Ξ0
c → Σ0K̄0 1.18 0.11 0.13 0.20 0.11 0.07

Ξ0
c → Σ+K− 0.12 0.12 0.27 0.36 0.12

Ξ0
c → Ξ0π0 0.03 0.56 0.28 0.04 0.69 0.87

Ξ0
c → Ξ0η 0.24 0.28 0.01 0.22

Ξ0
c → Ξ0η′ 0.85 0.31 0.09 0.06

Ξ0
c → Ξ−π+ 1.04 1.74 1.25 1.22 0.61 2.46 seen

Ω0
c → Ξ0K̄0 1.21 0.09 0.02

aBranching ratio relative to Ξ+
c → Ξ−π+π+.

C. Discussions

Various model predictions of the branching ratios and decay asymmetries for Cabibbo-allowed
Bc → B + P (V ) decays are summarized in Tables VI-IX. In the following we shall first discuss the
decay asymmetry parameter α and then turn to the decay rates.

1. Decay asymmetry

A very useful information is provided by the study of the polarization of the daughter baryon
B′ in the decay B → B′π. Its general expression is given by

PB′ =
(αB + PB · n)n + βB(n×PB) + γBn× (n×PB)

1 + αBPB · n , (6.7)

where PB is the parent baryon polarization, αB, βB and γB are the parent baryon asymmetry
parameters and n is a unit vector along the daughter baryon B′ in the parent baryon frame. If
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TABLE VII: The predicted asymmetry parameter α for Cabibbo-allowed Bc → B + P decays in
various models. Results cited from [72] are for φη−η′ = −23◦ and r = 1.4 .

Decay Körner, Xu, Cheng, Ivanov Żenczykowski Sharma, Expt.
Krämer [56] Kamal [60] Tseng [59] et al. [74] [73] Verma [72] [3]

Λ+
c → Λπ+ −0.70 −0.67 −0.95 −0.95 −0.99 −0.99 −0.91 ± 0.15

Λ+
c → Σ0π+ 0.70 0.92 0.78 0.43 0.39 −0.31

Λ+
c → Σ+π0 0.71 0.92 0.78 0.43 0.39 −0.31 −0.45± 0.32

Λ+
c → Σ+η 0.33 0.55 0 −0.91

Λ+
c → Σ+η′ −0.45 −0.05 −0.91 0.78

Λ+
c → pK̄0 −1.0 0.51 −0.49 −0.97 −0.66 −0.99

Λ+
c → Ξ0K+ 0 0 0 0 0

Ξ+
c → Σ+K̄0 −1.0 0.24 −0.09 −0.99 1.00 0.54

Ξ+
c → Ξ0π+ −0.78 −0.81 −0.77 −1.0 1.00 −0.27

Ξ0
c → ΛK̄0 −0.76 1.0 −0.73 −0.75 −0.29 −0.79

Ξ0
c → Σ0K̄0 −0.96 −0.99 −0.59 −0.55 −0.50 0.48

Ξ0
c → Σ+K− 0 0 0 0 0

Ξ0
c → Ξ0π0 0.92 0.92 −0.54 0.94 0.21 −0.80

Ξ0
c → Ξ0η −0.92 −1.0 −0.04 0.21

Ξ0
c → Ξ0η′ −0.38 −0.32 −1.00 0.80

Ξ0
c → Ξ−π+ −0.38 −0.38 −0.99 −0.84 −0.79 −0.97 −0.6± 0.4

Ω0
c → Ξ0K̄0 0.51 −0.93 −0.81

the parent baryon is unpolarized, the above equation reduces to PB′ = αBn, which implies that
the baryon B′ obtained from the decay of the unpolarized baryon B is longitudinally polarized by
the amount of αB. The transverse polarization components are measured by the parameters βB
and γB. In terms of the s- and p-wave amplitudes in Eq. (6.1), the baryon parameters have the
expressions

α =
2Re(S∗P )
|S|2 + |P |2 , β =

2Im(S∗P )
|S|2 + |P |2 , γ =

|S|2 − |P |2
|S|2 + |P |2 , (6.8)

where

S =
√

2mB′(E′ + mB′) A, P =
√

2mB′(E′ −mB′) B. (6.9)

When CP is conserved and final-state interactions are negligible, β vanishes. Since the sign of αB
depends on the relative sign between s- and p-wave amplitudes, the measurement of α can be used
to discriminate between different models.

The model predictions for the decay asymmetry α in Λ+
c → Λπ+ range from −0.67 to −0.99 (see

Table VII). The current world average of α is −0.91± 0.15 [3], while the most recent measurement
is −0.78± 0.16± 0.19 by FOCUS [75]. The agreement between theory and experiment implies the
V −A structure of the decay process Λ+

c → Λπ+.
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TABLE VIII: Branching ratios of Cabibbo-allowed Bc → B + V decays in various models. The
experimental value denoted by the superscript ∗ is the branching ratio relative to Ξ+

c → Ξ−π+π+.

Decay Körner, Żenczykowski Cheng, Experiment
Krämer [56] [73] Tseng [58] [3]

Λ+
c → Λρ+ 19.08 1.80 2.6 < 5

Λ+
c → Σ0ρ+ 3.14 1.56 0.19 0.99± 0.32

Λ+
c → Σ+ρ0 3.12 1.56 0.19 < 1.4

Λ+
c → Σ+ω 4.02 1.10 2.7± 1.0

Λ+
c → Σ+φ 0.26 0.11 0.32± 0.10

Λ+
c → pK̄∗0 3.08 5.03 3.3 1.6± 0.5

Λ+
c → Ξ0K∗+ 0.12 0.11 0.39± 0.14

Ξ+
c → Σ+K̄∗0 2.34 7.38 0.81± 0.15∗

Ξ+
c → Ξ0ρ+ 95.83 5.48

Ξ0
c → ΛK̄∗0 1.12 1.15

Ξ0
c → Σ0K̄∗0 0.62 0.77

Ξ0
c → Σ+K∗− 0.39 0.37

Ξ0
c → Ξ0ρ0 1.71 1.22

Ξ0
c → Ξ0ω 2.33 0.15

Ξ0
c → Ξ0φ 0.18 0.10

Ξ0
c → Ξ−ρ+ 12.29 1.50

Ω0
c → Ξ0K̄∗0 0.59

It is evident from Table VII that all the models except one model in [72] predict a positive decay
asymmetry for the decay Λ+

c → Σ+π0. Therefore, the measurement of α = −0.45 ± 0.31 ± 0.06
by CLEO [76] is a big surprise. If the negative sign of α is confirmed in the future, this will
imply an opposite sign between s-wave and p-wave amplitudes for this decay, contrary to the model
expectation. The implication of this has been discussed in detail in [58]. Since the error of the
previous CLEO measurement is very large, it is crucial to have more accurate measurements of the
decay asymmetry for Λ+

c → Σ+π0.
The decays Λ+

c → Ξ0K+ and Ξ0
c → Σ+K− share some common features that they can proceed

via W -exchange [66] and that their s-wave amplitudes are very small. As a consequence, their
decay asymmetries are expected to be very tiny. Indeed, all the existing models predict vanishing
s-wave amplitude and hence α = 0 (cf. Table VII).

2. Λ+
c decays

Experimentally, nearly all the branching ratios of the Λ+
c are measured relative to the pK−π+

mode. Some Cabibbo-suppressed modes such as Λ+
c → ΛK+ and Λ+

c → Σ0K+ have been recently
measured by BaBar [79]. Theoretically, only one model [80] gives predictions for the Cabibbo-
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TABLE IX: Branching ratios and decay asymmetries (in parentheses) of Cabibbo-allowed Bc →
B(3/2+) + P (V ) decays in various models. Experimental values denoted by the superscript ∗ are
the branching ratios relative to Ξ+

c → Ξ−π+π+. The model calculations of Xu and Kamal are done
in two different schemes [77].

Decay Körner, Xu & Kamal Cheng Experiment
Krämer [56] [77] [78] [3]

Λ+
c → ∆++K− 2.70 1.00(0.00); 1.04(0.43) 0.86± 0.30

Λ+
c → ∆+K̄0 0.90 0.34(0.00); 0.34(0.43) 0.99± 0.32

Λ+
c → Ξ∗0K+ 0.50 0.08(0.00); 0.08(0.25) 0.26± 0.10

Λ+
c → Σ∗+π0 0.50 0.22(0.00); 0.24(0.40)

Λ+
c → Σ∗0π+ 0.50 0.22(0.00); 0.24(0.40)

Λ+
c → Σ∗+η 0.54 0.85± 0.33

Ξ+
c → Σ∗+K̄0 0 0 1.0± 0.5∗

Ξ+
c → Ξ∗0π+ 0 0 < 0.1∗

Ξ0
c → Ω−K+ 0.34 0.15(0.00); 0.16(0.27) seen

Ξ0
c → Σ∗0K̄0 0.25 0.09(0.00); 0.10(0.43)

Ξ0
c → Σ∗+K− 0.49 0.18(0.00); 0.19(0.43)

Ξ0
c → Ξ∗0π0 0.28 0.12(0.00); 0.13(0.40)

Ξ0
c → Ξ∗−π+ 0.56 0.25(0.00); 0.27(0.40)

Ω0
c → Ω−π+ 0.35a2

1 1.47a2
1(0); 1.44a2

1(0) 0.92a2
1(0.17) seen

Ω0
c → Ξ∗0K̄0 0.40a2

2 0.69a2
2(0); 0.61a2

2(0) 1.06a2
2(0.35)

Ω0
c → Ω−ρ+ 2.02a2

1 8.02a2
1(−0.08); 7.82a2

2(−0.21) 3.23a2
1(0.43)

Ω0
c → Ξ∗0K̄∗0 2.28a2

2 3.15a2
2(−0.09); 1.13a2

2(−0.27) 1.60a2
2(0.28)

suppressed decays.
The first measured Cabibbo-suppressed mode Λ+

c → pφ is of particular interest because it
receives contributions only from the factorizable diagram and is expected to be color suppressed in
the naive factorization approach. An updated calculation in [81] yields

B(Λ+
c → pφ) = 2.26× 10−3a2

2, α(Λ+
c → pφ) = −0.10 . (6.10)

¿From the experimental measurement B(Λ+
c → pφ) = (8.2± 2.7)× 10−4 [3], it follows that

|a2|expt = 0.60± 0.10 . (6.11)

This is in excellent agreement with the 1/Nc approach where a2 = c2(mc) = −0.59 .

3. Ξ+
c decays

No absolute branching ratios have been measured. The branching ratios listed in Tables VI and
VIII are the ones relative to Ξ+

c → Ξ−π+π+. Several Cabibbo-suppressed decay modes such as
pK̄∗0, Σ+φ and Ξ(1690)K+ have been observed.
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The Cabibbo-allowed decays Ξ+
c → B(3/2+) + P have been studied and they are believed to

be forbidden as they do not receive factorizable and 1/2± pole contributions [56, 77]. However,
the Σ∗+K̄0 mode was seen by FOCUS before [82] and this may indicate the importance of pole
contributions beyond low-lying 1/2± intermediate states.

4. Ξ0
c decays

No absolute branching ratios have been measured so far. However, there are several measure-
ments of ratios of branching fractions, for example [3],

R1 =
Γ(Ξ0

c → ΛK0
S)

Γ(Ξ0
c → Ξ−π+)

= 0.21± 0.02± 0.02, R2 =
Γ(Ξ0

c → Ω−K+)
Γ(Ξ0

c → Ξ−π+)
= 0.297± 0.024 . (6.12)

Most models predict a ratio of R1 smaller than 0.18 except the model of Żenczykowski [73] which
yields R1 = 0.29 due to the small predicted rate of Ξ0

c → Ξ−π+ (see Table VI). The model of
Körner and Krämer [56] predicts R2 = 0.33 (Table IX), in agreement with experiment, but its
prediction R1 = 0.06 is too small compared to the data.

5. Ω0
c decays

One of the unique features of the Ω0
c decay is that the decay Ω0

c → Ω−π+ proceeds only via
external W -emission, while Ω0

c → Ξ∗0K̄0 proceeds via the factorizable internal W -emission diagram
C ′. The general amplitudes for Bc → B∗(3

2

+) + P (V ) are:

M [Bi → B∗f (3/2+) + P ] = iqµūµ
f (pf )(C + Dγ5)ui(pi),

M [Bi → B∗f (3/2+) + V ] = ūν
f (pf )ε∗µ[gνµ(C1 + D1γ5)

+p1νγµ(C2 + D2γ5) + p1νp2µ(C3 + D3γ5)]ui(pi), (6.13)

with uµ being the Rarita-Schwinger vector spinor for a spin-3
2 particle. Various model predictions

of Cabibbo-allowed Ω0
c → B(3/2+)+P (V ) are displayed in Table IX with the unknown parameters

a1 and a2. From the decay Λ+
c → pφ we learn that |a2| = 0.60 ± 0.10. Notice a sign difference of

α for Ωc → 3
2

+ + V in [77] and [78]. It seems to us that the sign of Ai and Bi in Eq. (58) of [77]
should be flipped. A consequence of this sign change will render α positive in Ωc → 3

2

+ + V decay.
In the model of Xu and Kamal [77], the D-wave amplitude in Eq. (6.13) and hence the parameter
α vanishes in the decay Ωc → 3

2

+ + P due to the fact that the vector current is conserved at all q2

in their scheme 1 and at q2 = 0 in scheme 2.

D. Charm-flavor-conserving weak decays

There is a special class of weak decays of charmed baryons which can be studied in a reliable
way, namely, heavy-flavor-conserving nonleptonic decays. Some examples are the singly Cabibbo-
suppressed decays Ξc → Λcπ and Ωc → Ξ′cπ. The idea is simple: In these decays only the light
quarks inside the heavy baryon will participate in weak interactions; that is, while the two light
quarks undergo weak transitions, the heavy quark behaves as a “spectator”. As the emitted light
mesons are soft, the ∆S = 1 weak interactions among light quarks can be handled by the well
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TABLE X: Predicted semileptonic decay rates (in units of 1010s−1) and decay asymmetries (second
entry) in various models. Dipole q2 dependence for form factors is assumed whenever the form-
factor momentum dependence is not calculated in the model. Predictions of [85] are obtained in
the non-relativistic quark model and the MIT bag model (in parentheses).

Process Pérez-Marcial Singleton Cheng, Ivanov Luo Marques de Carvalho Huang, Expt.

et al. [85] [86] Tseng [81] et al. [87] [88] et al. [89] Wang [90] [3]

Λ+
c → Λ0e+νe 11.2 (7.7) 9.8 7.1 7.22 7.0 13.2± 1.8 10.9± 3.0 10.5± 3.0

−0.812 −1 −0.88± 0.03 −0.86± 0.04

Ξ0
c → Ξ−e+νe 18.1 (12.5) 8.5 7.4 8.16 9.7 seen

Ξ+
c → Ξ0e+νe 18.4 (12.7) 8.5 7.4 8.16 9.7 seen

known short-distance effective Hamiltonian. The synthesis of heavy-quark and chiral symmetries
provides a natural setting for investigating these reactions [83]. The weak decays ΞQ → ΛQπ with
Q = c, b were also studied in [84].

The combined symmetries of heavy and light quarks severely restricts the weak interactions
allowed. In the symmetry limit, it is found that there cannot be B3̄ − B6 and B∗6 − B6 nonleptonic
weak transitions. Symmetries alone permit three types of transitions: B3̄−B3̄, B6−B6 and B∗6−B6

transitions. However, in both the MIT bag and diquark models, only B3̄ − B3̄ transitions have
nonzero amplitudes.

The predicted rates are [83]

Γ(Ξ0
c → Λ+

c π−) = 1.7× 10−15 GeV, Γ(Ξ+
c → Λ+

c π0) = 1.0× 10−15 GeV,

Γ(Ω0
c → Ξ′+c π−) = 4.3× 10−17 GeV, (6.14)

and the corresponding branching ratios are

B(Ξ0
c → Λ+

c π−) = 2.9× 10−4, B(Ξ+
c → Λ+

c π0) = 6.7× 10−4,

B(Ω0
c → Ξ′+c π−) = 4.5× 10−6. (6.15)

As stated above, the B6 − B6 transition Ω0
c → Ξ′+c π− vanishes in the chiral limit. It receives a

finite factorizable contribution as a result of symmetry-breaking effect. At any rate, the predicted
branching ratios for the charm-flavor-conserving decays Ξ0

c → Λ+
c π− and Ξ+

c → Λ+
c π0 are of order

10−3 ∼ 10−4 and should be readily accessible in the near future.

VII. SEMILEPTONIC DECAYS

The exclusive semileptonic decays of charmed baryons: Λ+
c → Λe+(µ+)νe, Ξ+

c → Ξ0e+νe and
Ξ0

c → Ξ−e+νe have been observed experimentally. Their rates depend on the Bc → B form factors
fi(q2) and gi(q2) (i = 1, 2, 3) defined in Eq. (6.4). These form factors have been evaluated in the
non-relativistic quark model [81, 85, 86], the MIT bag model [85], the relativistic quark model [87],
the light-front quark model [88] and QCD sum rules [89, 90]. Experimentally, the only information
available so far is the form-factor ratio measured in the semileptonic decay Λc → Λeν̄. In the heavy
quark limit, the six Λc → Λ form factors are reduced to two:

〈Λ(p)|s̄γµ(1− γ5)c|Λc(v)〉 = ūΛ

(
FΛcΛ

1 (v · p) + v/FΛcΛ
2 (v · p)

)
γµ(1− γ5)uΛc

. (7.1)
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Assuming a dipole q2 behavior for form factors, the ratio R = F̃ΛcΛ
2 /F̃ΛcΛ

1 is measured by CLEO
to be [91]

R = −0.31± 0.05± 0.04 . (7.2)

Various model predictions of the charmed baryon semileptonic decay rates and decay asymme-
tries are shown in Table X. Dipole q2 dependence for form factors is assumed whenever the form
factor momentum dependence is not available in the model. The predicted rates cited from [85]
include QCD corrections. However, as stressed in [1], it seems that QCD effects computed in [85]
are unrealistically too large. Moreover, the calculated heavy-heavy baryon form factors in [85] at
zero recoil do not satisfy the constraints imposed by heavy quark symmetry [81]. From Table X we
see that the computed branching ratios of Λ+

c → Λe+ν lie in the range 1.4% ∼ 2.6%, in agreement
with experiment, (2.1±0.6)% [3]. Branching ratios of Ξ0

c → Ξ−e+ν and Ξ+
c → Ξ0e+ν are predicted

to fall into the ranges (0.8 ∼ 2.0)% and (3.3 ∼ 8.1)%, resepctively. Experimentally, only the ratios
of the branching fractions are available so far [3]

Γ(Ξ+
c → Ξ0e+ν)

Γ(Ξ+
c → Ξ−π+π+)

= 2.3± 0.6+0.3
−0.6,

Γ(Ξ0
c → Ξ−e+ν)

Γ(Ξ0
c → Ξ−π+)

= 3.1± 1.0+0.3
−0.5 . (7.3)

VIII. ELECTROMAGNETIC AND WEAK RADIATIVE DECAYS

Although radiative decays are well measured in the charmed meson sector, e.g. D∗ → Dγ

and D+
s → D+

s γ, only three of the radiative modes in the charmed baryon sector have been seen,
namely, Ξ′0c → Ξ0

cγ, Ξ′+c → Ξ+
c γ and Ω∗0c → Ω0

cγ. This is understandable because mΞ′c −mΞc ≈ 107
MeV and mΩ∗c −mΩc ≈ 71 MeV. Hence, Ξ′c and Ω∗c are governed by the electromagnetic decays.
However, it will be difficult to measure the rates of these decays because these states are too
narrow to be experimentally resolvable. Nevertheless, we shall systematically study the two-body
electromagnetic decays of charmed baryons and also weak radiative decays.

A. Electromagnetic decays

In the baryon sector, the following two-body electromagnetic decays are of interest:

B6 → B3 + γ : Σc → Λc + γ, Ξ′c → Ξc + γ,

B∗
6 → B3 + γ : Σ∗c → Λc + γ, Ξ′∗c → Ξc + γ,

B∗
6 → B6 + γ : Σ∗c → Σc + γ, Ξ′∗c → Ξ′c + γ, Ω∗c → Ωc + γ, (8.1)

where we have denoted the spin 1
2 baryons as B6 and B3 for a symmetric sextet 6 and antisymmetric

antitriplet 3̄, respectively, and the spin 3
2 baryon by B∗

6 .
An ideal theoretical framework for studying the above-mentioned electromagnetic decays is pro-

vided by the formalism in which the heavy quark symmetry and the chiral symmetry of light quarks
are combined [21, 22]. When supplemented by the nonrelativistic quark model, the formalism de-
termines completely the low energy dynamics of heavy hadrons. The electromagnetic interactions
of heavy hadrons consist of two distinct contributions: one from gauging electromagnetically the
chirally invariant strong interaction Lagrangians for heavy mesons and baryons given in [21, 22],
and the other from the anomalous magnetic moment couplings of the heavy particles. The heavy
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π

Σc
Λc

FIG. 5: Chiral loop contribution to the E2 amplitude of Σ∗c → Λcγ.

quark symmetry reduces the number of free parameters needed to describe the magnetic couplings
to the photon. There are two undetermined parameters for the ground state heavy baryons. All
these parameters are related simply to the magnetic moments of the light quarks in the nonrel-
ativistic quark model. However, the charmed quark is not particularly heavy (mc ' 1.6 GeV),
and it carries a charge of 2

3e. Consequently, the contribution from its magnetic moment cannot be
neglected. The chiral and electromagnetic gauge-invariant Lagrangian for heavy baryons can be
found in Eqs. (3.8) and (3.9) of [92].

The amplitudes of electromagnetic decays are given by [92]

A(B6 → B3̄ + γ) = iη1ū3̄σµνk
µενu6,

A(B∗
6 → B3̄ + γ) = iη2εµναβū3̄γ

νkαεβuµ,

A(B∗
6 → B6 + γ) = iη3εµναβū6γ

νkαεβuµ, (8.2)

where kµ is the photon 4-momentum and εµ is the polarization 4-vector. The corresponding decay
rates are [92]

Γ(B6 → B3̄ + γ) = η2
1

k3

π
,

Γ(B∗
6 → B3̄ + γ) = η2

2

k3

3π

3m2
i + m2

f

4m2
i

,

Γ(B∗
6 → B6 + γ) = η2

3

k3

3π

3m2
i + m2

f

4m2
i

, (8.3)

where mi (mf ) is the mass of the parent (daughter) baryon.
The coupling constants ηi can be calculated using the quark model [92]; some of them are

η1(Σ+
c → Λ+

c ) =
e

6
√

3

(
2

Mu
+

1
Md

)
, η2(Σ∗+c → Λ+

c ) =
e

3
√

6

(
2

Mu
+

1
Md

)
,

η3(Σ∗++
c → Σ++

c ) =
2
√

2e

9

(
1

Mu
− 1

Mc

)
, η3(Σ∗0c → Σ0

c) =
2
√

2e

9

(
− 1

2Md
− 1

Mc

)
,

η3(Σ∗+c → Σ+
c ) =

√
2e

9

(
1

Mu
− 1

2Md
− 2

Mc

)
, η3(Ξ

′∗+
c → Ξ+

c ) =
e

3
√

6

(
2

Mu
+

1
Ms

)
,

η3(Ξ
′∗0
c → Ξ0

c) =
e

3
√

6

(
− 1

Md
+

1
Ms

)
, η3(Ω∗0c → Ω0

c) =
2
√

2e

9

(
− 1

2Ms
− 1

Mc

)
. (8.4)

Using the constituent quark masses, Mu = 338 MeV, Md = 322 MeV and Ms = 510 MeV [3], the
calculated results are summarized in the second column of Table XI. A similar procedure is followed
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TABLE XI: Electromagnetic decay rates (in units of keV) of charmed baryons.

Decay HHChPT Ivanov Bañuls Tawfiq Experiment
+QM [23, 92] et al. [87] et al. [93] et al. [94] [3]

Σ+
c → Λ+

c γ 88 60.7± 1.5 87
Σ∗∗+c → Σ++

c γ 1.4 3.04
Σ∗+c → Σ+

c γ 0.002 0.14± 0.004 0.19
Σ∗+c → Λ+

c γ 147 151± 4
Σ∗0c → Λ0

cγ 1.2 0.76
Ξ′+c → Ξ+

c γ 16 12.7± 1.5 seen
Ξ′0c → Ξ0

cγ 0.3 0.17± 0.02 1.2± 0.7 seen
Ξ′∗+c → Ξ+

c γ 54 54± 3
Ξ′∗0c → Ξ0

cγ 1.1 0.68± 0.04 5.1± 2.7
Ω∗0c → Ω0

cγ 0.9 seen

in [94] where the heavy quark symmetry is supplemented with light-diquark symmetries to calculate
the widths of Σ+

c → Λ+
c γ and Σ∗c → Σcγ. The authors of [87] apply the relativistic quark model

to predict various electromagnetic decays of charmed baryons. Besides the magnetic dipole (M1)
transition, the author of [95] also considered and estimated the electric quadrupole (E2) amplitude
for Σ∗+c → Λ+

c γ arising from the chiral loop correction (Fig. 5). A detailed analysis of the E2
contributions was presented in [93]. The E2 amplitudes appear at different higher orders for the
three kinds of decays: O(1/Λ2

χ) for B∗
6 → B6 + γ, O(1/mQΛ2

χ) for B∗
6 → B3̄ + γ and O(1/m3

QΛ2
χ)

for B6 → B3̄ + γ. Therefore, the E2 contribution to B6 → B3̄ + γ is completely negligible.
Chiral-loop corrections to the M1 electromagnetic decays and to the strong decays of heavy

baryons have been computed at the one loop order in [96]. The leading chiral-loop effects we found
are nonanalytic in the forms of m/Λχ and (m2/Λ2

χ) ln(Λ2/m2) (or m
1/2
q and mq lnmq, with mq

being the light quark mass). Some results are [96]

Γ(Σ+
c → Λ+

c γ) = 112 keV, Γ(Ξ′+c → Ξ+
c γ) = 29 keV, Γ(Ξ′0c → Ξ0

cγ) = 0.15 keV, (8.5)

which should be compared with the corresponding quark-model results: 88 keV, 16 keV and 0.3
keV (Table XI).

The electromagnetic decay Ξ′∗0c → Ξ0
cγ is of special interest. It has been advocated in [97] that

a measurement of its branching ratio will determine one of the coupling constants in HHChPT,
namely, g1. The radiative decay Ξ

′∗0
c → Ξ0

cγ is forbidden at tree level in SU(3) limit [see Eq.
(8.4)]. In heavy baryon chiral perturbation theory, this radiative decay is induced via chiral loops
where SU(3) symmetry is broken by the light current quark masses. By identifying the chiral loop
contribution to Ξ′∗0c → Ξ0

cγ with the quark model prediction given in Eq. (8.4), it was found in [23]
that one of the two possible solutions is in accord with the quark model expectation for g1.

For the electromagnetic deacys of p-wave charmed baryons, the search of Λc(2593)+ → Λ+
c γ and

Λ+
c (2625)+ → Λ+

c γ has been failed so far. On the theoretical side, the interested reader is referred
to [32, 34, 87, 94, 97, 98] for more details.

The electromagnetic decays considered so far do not test critically the heavy quark symmetry
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FIG. 6: W -exchange diagrams contributing to the quark-quark bremsstrahlung process c + ū →
s + d̄ + γ. The W -annihilation type diagrams are not shown here.

nor the chiral symmetry. The results follow simply from the quark model. There are examples
in which both the heavy quark symmetry and the chiral symmetry enter in a crucial way. These
are the radiative decays of heavy baryons involving an emitted pion. Some examples which are
kinematically allowed are

Σc → Λcπγ, Σ∗c → Λcπγ, Σ∗c → Σcπγ, Ξ∗c → Ξcπγ. (8.6)

For an analysis of the decay Σc → Λcπγ, see [92].

B. Weak radiative decays

At the quark level, there are three different types of processes which can contribute to the
weak radiative decays of heavy hadrons, namely, single-, two- and three-quark transitions [100].
The single-quark transition mechanism comes from the so-called electromagnetic penguin diagram.
Unfortunately, the penguin process c → uγ is very suppressed and hence it plays no role in charmed
hadron radiative decays. There are two contributions from the two-quark transitions: one from the
W -exchange diagram accompanied by a photon emission from the external quark, and the other
from the same W -exchange diagram but with a photon radiated from the W boson. The latter
is typically suppressed by a factor of mqk/M2

W (k being the photon energy) as compared to the
former bremsstrahlung process [99]. For charmed baryons, the Cabibbo-allowed decay modes via
cū → sd̄γ (Fig. 6) or cd → usγ are

Λ+
c → Σ+γ, Ξ0

c → Ξ0γ. (8.7)

Finally, the three-quark transition involving W -exchange between two quarks and a photon emission
by the third quark is quite suppressed because of very small probability of finding three quarks in
adequate kinematic matching with the baryons [100, 101].

The general amplitude of the weak radiative baryon decay reads

A(Bi → Bfγ) = iūf (a + bγ5)σµνε
µkνui, (8.8)

where a and b are parity-conserving and -violating amplitudes, respectively. The corresponding
decay rate is

Γ(Bi → Bfγ) =
1
8π

(
m2

i −m2
f

mi

)3

(|a|2 + |b|2). (8.9)
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Nonpenguin weak radiative decays of charmed baryons such as those in (8.7) are characterized
by emission of a hard photon and the presence of a highly virtual intermediate quark between the
electromagnetic and weak vertices. It has been shown in [102] that these features should make
possible to analyze these processes by perturbative QCD; that is, these processes are describable
by an effective local and gauge invariant Lagrangian:

Heff(cū → sd̄γ) =
GF

2
√

2
VcsV

∗
ud(c+OF

+ + c−OF
−), (8.10)

with

OF
±(cū → sd̄γ) =

e

m2
i −m2

f

{ (
es

mf

ms
+ eu

mi

mu

) (
F̃µν + iFµν

)
Oµν
± (8.11)

−
(

ed
mf

md
+ ec

mi

mc

) (
F̃µν − iFµν

)
Oµν
∓

}
, (8.12)

where mi = mc + mu, mf = ms + md, F̃µν ≡ 1
2εµναβFαβ and

Oµν
± = s̄γµ(1− γ5)cūγν(1− γ5)d± s̄γµ(1− γ5)dūγν(1− γ5)c. (8.13)

For the charmed baryon radiative decays, one needs to evaluate the matrix element 〈Bf |Oµν
± |Bi〉.

Since the quark-model wave functions best resemble the hadronic states in the frame where both
baryons are static, the static MIT bag model [71] was thus adopted in [102] for the calculation.
The predictions are

B(Λ+
c → Σ+γ) = 4.9× 10−5, α(Λ+

c → Σ+γ) = −0.86 ,

B(Ξ0
c → Ξ0γ) = 3.6× 10−5, α(Ξ0

c → Ξ0γ) = −0.86 . (8.14)

A different analysis of the same decays was carried out in [103] with the results

B(Λ+
c → Σ+γ) = 2.8× 10−4, α(Λ+

c → Σ+γ) = 0.02 ,

B(Ξ0
c → Ξ0γ) = 1.5× 10−4, α(Ξ0

c → Ξ0γ) = −0.01 . (8.15)

Evidently, these predictions (especially the decay asymmetry) are very different from the ones
obtained in [102].

Finally, it is worth remarking that, in analog to the heavy-flavor-conserving nonleptonic weak
decays as discussed in Sec. VI, there is a special class of weak radiative decays in which heavy
flavor is conserved. Some examples are Ξc → Λcγ and Ωc → Ξcγ. In these decays, weak radiative
transitions arise from the diquark sector of the heavy baryon whereas the heavy quark behaves
as a spectator. However, the dynamics of these radiative decays is more complicated than their
counterpart in nonleptonic weak decays, e.g., Ξc → Λcπ. In any event, it deserves a detailed study.
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[39] B. Guberina, R. Rückl, and J. Trampetić, Z. Phys. C 33, 297 (1986).
[40] M.A. Shifman and M.B. Voloshin, Sov. J. Nucl. Phys. 41, 120 (1985); Sov. Phys. JETP 64,

698 (1986).
[41] R. Rückl, Phys. Lett. B 120, 449 (1983).
[42] I.I. Bigi, N.G. Uraltsev, and A.I. Vainshtein, Phys. Lett. B 293, 430 (1992); B 297, 477(E)

(1992).
[43] B. Blok and M. Shifman, Nucl. Phys. B 399, 441 (1993); B 399, 459 (1993).
[44] I.I. Bigi, M. Shifman, N.G. Uraltsev, and A. Vainshtein, Phys. Rev. Lett. 71, 496 (1993); A.

Manohar and M.B. Wise, Phys. Rev. D 49, 1310 (1994); B. Blok, L. Koyrakh, M. Shifman,
and A. Vainshtein, Phys. Rev. D 49, 3356 (1994).

[45] J. Chay, H. Georgi, and B. Grinstein, Phys. Lett. B 247, 399 (1990); J. Chay and S.J. Rey,
Z. Phys. C 68, 431 (1995).

[46] M.E. Luke, Phys. Lett. B 252, 447 (1990).
[47] For a review of the nonperturbative HQET parameters, see M. Neubert, Int. J. Mod. Phys.

A 11, 4173 (1996).
[48] H.Y. Cheng, Phys. Rev. D 56, 2783 (1997).
[49] M.B. Voloshin, Phys. Lett. B 385, 369 (1996).
[50] Q. Hokim and X.Y. Pham, Phys. Lett. B 122, 297 (1983).
[51] J.L. Rosner, Phys. Lett. B 379, 267 (1996).
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J. Trampetić, ibid. B114, 179 (1982); M. Bauer and B. Stech, ibid. B 152, 380 (1985).
[69] A.J. Buras, J.-M. Gérard, and R. Rückl, Nucl. Phys. B268, 16 (1986).
[70] B. Blok and M. Shifman, Sov. J. Nucl. Phys. 45, 35, 301, 522 (1987).
[71] A. Chodos, R.L. Jaffe, K. Johnson, and C.B. Thorn, Phys. Rev. D 10, 2599 (1974); T.

DeGrand, R.L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D 12, 2060 (1975).
[72] K.K. Sharma and R.C. Verma, Eur. Phys. J. C 7, 217 (1999).
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