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1 Present Status and Implication for QCD

The SM’s electroweak phenomenology of charm changing transitions appears dull with
the CKM parameters well-known due to three-family unitarity constraints, D0 − D̄0 os-
cillations being slow, CP asymmetries small at best and loop driven decays extremely
rare with huge backgrounds due to long distance dynamics. Yet this very dullness can be
utilized to gain new insights into nonperturbative dynamics, make progress in establishing
theoretical control over them and calibrate our theoretical tools for B studies.

The issue at stake here is not whether QCD is the theory of the strong forces – there is
no alternative – but our ability to perform calculations. Charm hadrons can act here as a
bridge between the worlds of light flavours – as carried by u, d and s quarks with masses
lighter or at most comparable to ΛQCD and described by chiral perturbation theory – and
that of the bona fide heavy b quark with ΛQCD � mb treatable by heavy quark theory.
Only lattice QCD (LQCD) carries the promise for a truly quantitative treatment of charm
hadrons that can be improved systematically. Furthermore LQCD is the only framework
available that allows to approach charm from lower as well as higher mass scales, which
involves different aspects of nonperturbative dynamics and thus – if successful – would
provide impressive validation.

At present such a program can be carried most explicitly for exclusive semileptonic
decays of charm hadrons as described in detail in Sect.26.2, especially since lattice LQCD
is reaching a stage where it can make rather accurate predictions for such modes. The
theoretical challenges posed by nonleptonic decays are obviously more formidable. The
complexities increase considerably for exclusive nonleptonic transitions, in particular due
to the importance of final state interactions (FSI), which are much harder to bring under
theoretical control even by using start-of-the-art LQCD.

Yet there are some strong motivations for obtaining a reliable description of exclusive
nonleptonic charm decays:

• Their dynamics is largely determined by the transition region from the perturba-
tive to the nonperturbative domain. Thus we can gain novel insights there. One
should also not give up hope for a future theoretical breakthrough in LQCD (or the

1Sections 1 and 2 have been revised by I.Bigi with many additions
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advent of another similarly powerful theoretical technology) allowing us to extract
numerically reliable lessons.

• The most sensitive probes for New Physics are CP asymmetries in nonleptonic
channels. The search strategies and subsequent interpretations depend on hadronic
matrix elements, FSI and their phases. As already indicated we do not know how
to compute them, yet one can profit here from a pragmatic exercise in ‘theoretical
engineering’: providing a phenomenological, yet comprehensive framework for a
host of charm modes allows to extract quantitative information on hadroniic matrix
elements and FSI phases and evaluate their reliability through overconstraints. The
huge datasets already obtained by the B factories, CLEO-c and BESII and to be
further expanded including also future BESIII studies will be of essential help here.

• Analogous decays of B are being studied also as a mean to extract the complex
phase of Vub. One could hope that D decays might serve as a validation analysis.

• Carefully analysing branching ratios can teach us novel lessons on light-flavour
hadron spectroscopy, like on characteristics of some resonances like the scalar mesons
or on the η and η′ mixing and a possible non-q̄q component in them.

2 Theoretical Review

2.1 The Effective Weak Hamiltonian

The theoretical description starts from constructing an effective ∆C 6= 0 Hamiltonian
through an operator product expansion (OPE) in terms of local operators Oi and their
coefficients ci:

〈f |Heff |D〉 =
GF√

2
VCKM

∑

i

ci(µ)〈f |Oi|D〉(µ) (1)

The auxiliary scale µ has been introduced – and this is a central element of the Wilso-
nian prescription for the OPE – to separate contributions from long and short distance
dynamics: long distance > 1/µ > short distance. Degrees of freedom with typical mass
scales above µ are integrated out into the coefficients ci typically using perturbation the-
ory, while degrees of freedom with scales below µ remain dynamical and are contained in
the operators Oi. Nonperturbative dynamics enters through their hadronic expectation
values.

Observables of course cannot depend on the choice µ at all. I.e., the µ dependence
of the coefficients has to cancel against that of the matrix elements, when one does a
complete calculation. Yet in practice one has to keep the following in mind:

• The perturbatively treated coefficients contain also the strong coupling αS. To keep
it in the perturbative domain, one needs

µ � ΛQCD (2)
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• Yet at the same time one does not want to choose too high a value for µ, since it
also provides the momentum cut-off in the hadronic wave function with which the
matrix element is evaluated.

These two contravening requirements can be met by µ ∼ 1 − 1.5GeV, which happens
to be close to the charm quark mass. Thus µ = mc provides a reasonable ansatz. In
practice one has to rely on additional approximations of various kinds, which causes the
computed rates to contain some sensitivity at least to µ, which can provide one gauge for
the reliability of the result.

We do not know yet how to calculate these hadronic matrix elements from QCD’s first
principles in a numerically accurate way, although several different ‘second generation’
theoretical technologies have been brought to bear on them: 1/NC expansions, QCD sum
rules and lattice QCD. While there is reasonable hope that the latter will be validated
in (semi)leptonic D decays, exclusive nonleptonic transitions provide qualitatively new
challenges.

While in the SM the weak decays are driven by charged currents, the intervention of
QCD affects the strength of the charged current product and induce a product of effective
neutral currents in a way that depends on µ. For Cabibbo allowed transitions, one can
write down the effective weak Lagragian

L∆C=1
eff (µ = mc) = −GF√

2
VudV

∗

cs · [c−O− + c+O+] , (3)

O± =
1

2
[(s̄LγνcL)(ūLγνdL)] ± (ūLγνcL)(s̄LγνdL)] , (4)

which is conveniently rewritten as follows:

L∆C=1
eff (µ = mc) = −GF√

2
VudV

∗

cs · [c1O1 + c2O2] ,

O1 = (s̄LγνcL)(ūLγνdL) , O2 = (ūLγνcL)(s̄LγνdL) , (5)

with

c1 =
1

2
(c+ + c−) , c2 =

1

2
(c+ − c−) . (6)

Using different schemes one typically gets [1]:

c1(mc) = 1.25 ± 0.03 , c2(mc) = −0.48 ± 0.05 (7)

2.2 Factorization and First Generation Theoretical Technolo-
gies

All decay amplitudes can then be expressed as linear combinations of two terms:

A(D → f) ∝ a1〈f |J (ch)
µ J ′(ch)µ|D〉 + a2〈f |J (neut)

µ J ′(neut)µ|D〉 , (8)
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with
a1 = c1 + ξc2 , a2 = c2 + ξc1 . (9)

It should be noted that the quantities c1 and c2 on one hand and ξ on the other are
of completely different origin despite their common appearance in a1 and a2: while c1,2

are determined by short-distance dynamics, ξ parametrizes the impact of long distance
dynamics on the size of matrix elements including effects due to final state interactions
(FSI). Eq.(9) contains two very important implicit assumptions, namely that the value
of ξ is the same in the expression for a1 and a2 and that it does not depend on the final
state.

A very convenient ansatz is to write the nonleptonic transition matrix element as a
product of two simpler matrix elements [2]

〈f |JµJ
′µ|D〉 ≡ 〈f1f2|JµJ

′µ|D〉 ' 〈f1|Jµ|0〉〈f2|J ′µ|D〉 , (10)

where f1 and f2 are ”effective particles” that can contain any number of final state par-
ticles. The basic assumption here is that the colour flow mediated by gluon exchanges
between the two ‘clusters’ 0 → f1 and D → f2 can be ignored and all the strong interaction
effects lumped into two simpler transition amplitudes. Clearly this factorization ansatz
can be only an approximation rather than an identity. One should also note that Eq.(11)
is µ dependent; i.e. changing the value of µ will transform factorized contributions into
non-factorized ones and vice versa. The best chance for this ansatz to represent a decent
approximation is for the separation scale µ to be around ordinary hadronic scales of about
1 GeV. This values happens to be close to mc, yet that is a coincidence, since heavy quark
masses are extraneous to QCD.

Besides these two types of diagrams which are usually referred as color favored and
color suppressed diagrams, other types of considerations are the weak annihilation (WA)
contributions including annihilation and exchange diagrams where the matrix element is
approximately written as

〈f1f2|JµJ
′µ|D〉 ' 〈f1f2|Jµ|0〉〈0|J ′µ|D〉 . (11)

Having assumed factorization we have greatly restricted the number of free parameters.
The amplitudes 〈f1|Jiµ|0〉 and 〈f2|J ′µ

i |D〉 can be taken from data on (semi)leptonic D
decays at least in principle though in practice that information is augmented by some
theoretical arguments. The two quantities a1,2 are then treated as free parameters fitted
from experiment, although in practice again some theoretical judgment has to be applied
concerning if and to which degree WA diagrams are included in addition to the spectator
diagrams and corrections for FSI have to be applied.

Such an analysis was first carried out by Bauer, Stech and Wirbel from charmed meson
two-body decays, yielding [3]

a1|exp ' 1.2 ± 0.1 , a2|exp ' −0.5 ± 0.1 (12)

to be compared with the theoretical expectations

a1|QCD ' 1.25 − 0.48ξ , a2|QCD ' −0.48 + 1.25ξ . (13)
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It is remarkable that with just two fit parameters one can get a decent description of a
host of nonleptonic rates. However one might say that those parameters have the wrong
values: naively just counting colours one expects ξ ' 1/NC = 1/3 and thus a1|QCD ' 1.09
and a2|QCD ' −0.06; for a2 this is inconsistent with the experimental fit value. ξ ' 0
would reconcile Eqs.12 and 13.

2.3 The 1/NC ansatz

The fit result ξ ' 0 leads to an intriguing speculation that these weak two-body decays can
be described more rigorously through 1/NC expansions [4]. They are invoked to calculate
hadronic matrix elements. The procedure is the following: One employs the effective
weak transition operator Leff(∆C = 1) given explicitly in Eq.(3); since it describes short
distance dynamics, one has kept NC = 3 there. Then one expands the matrix element for
a certain transition driven by this operators in 1/NC

A(D → f) = 〈f |Leff(∆C = 1)|D〉 =
√

NC

(

b0 +
b1

NC

+ O(1/N 2
C)

)

. (14)

Using the rules for 1/NC expansions, it is easy to show that the following simplifying
properties hold for the contributions leading in 1/NC:

• one has to consider valence quark wave functions only;

• factorization holds;

• WA has to be ignored as have FSI.

To leading order in 1/NC only the term b0 is retained; then one has effectively ξ = 0 since
ξ ' 1/NC represents a higher order contribution. However the next-to-leading term b1

is in general beyond theoretical control. 1/NC expansions therefore do not enable us to
decrease the uncertainties systematically.

The NC → ∞ prescription is certainly a very compact one with transparent rules, and
it provides not a bad first approximation – but not more. One can ignore neither FSI nor
WA completely.

2.4 Treatment with QCD sum rules

A treatment of D → PP and D → PV decays based on a judicious application of QCD
sum rules was developed in a series of papers [5]. The authors analyzed four-point corre-
lation functions between the weak Lagrangian L(∆C = 1) and three currents. As usual
an OPE is applied to the correlation function in the Euclidean region; nonperturbative
dynamics is incorporated through condensates 〈0|mq̄q|0〉, 〈0|G · G|0〉 etc., the numerical
values of which are extracted from other light-quark systems. They extrapolated their
results to the Minkowskian domain through a (double) dispersion relation and succeed in
finding a stability range for matching it with phenomenological hadronic expressions.
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The analysis has some nice features:
⊕ It has a clear basis in QCD, and includes, in principle at least, nonperturbative dynamics
in a well-defined way.
⊕ It incorporates different quark-level processes – external and internal W emission, WA
and Pauli interference – in a natural manner.
⊕ It allows to include nonfactorizable contributions systematically.

In practice, however, it suffers from some shortcomings at the same time:
	 The charm scale is not sufficiently high that one could have full confidence in the various
extrapolations undertaken.
	 To make these very lengthy calculations at all manageable, some simplifying assump-
tions had to be made, like mu = md = ms = 0 and SU(3)F l breaking beyond mK > mπ

had to be ignored; in particular 〈0|s̄s|0〉 = 〈0|d̄d|0〉 = 〈0|ūu|0〉 was used. Thus one cannot
expect SU(3)F l breaking to be reproduced correctly.
	 Prominent FSI that vary rapidly with the energy scale – like effects due to narrow res-
onances - cannot be described in this treatment; for an extrapolation from the Euclidean
to the Minkowskian domain amounts to some averaging or ‘smearing’ over energies.

A statement that the predictions did not provide an excellent fit to the data on about
twenty-odd D0, D+ and D+

s modes – while correct on the surface, especially when SU(3)F l

breaking is involved – misses the main point:

• No a priori model assumption like factorization had to be made.

• The theoretical description does not contain any free parameters in principle, though
in practice there is leeway in the size of some decay constants.

2.5 Modern Developments

As the data improved, the BSW prescription became inadequate, however most subse-
quent attempts to describe nonleptonic decays in the D system – except for the sum rules
approach sketched above – use the assumption of naive factorization as a starting point.

Improvements and generalizations of the BSW description have been made in three
areas:

1. Different parameterizations for the q2 dependence of the form factors are used and
different evaluations of their normalization are made. This is similar to what was ad-
dressed in our discussion of exclusive semileptonic decays. One appealing suggestion
has been suggested to use only those expressions for form factors that asymptotically
– i.e. for mc, ms → ∞ – exhibit heavy quark symmetry.

2. Attempts have been made to incorporate FSI more reliably. Non-factorized contri-
butions in general have been considered.

3. Contributions due to WA and Penguin operators have been included.

6



Two frameworks that are more firmly based on QCD than quark models have been
developed to treat two-body decays of B mesons, namely ‘QCD factorization’ [6] and
‘pQCD’ [7]. While there is little reason to expect the more aggressive pQCD approach
to work already for charm decays, a treatment based on QCD factorization is worth a
try despite the charm mass barely exceeding ordinary hadronic scales. To illustrate the
present status the branching ratios of D → ππ decays as inferred from naive factorization
and QCD factorization approaches are listed here [8]:

BR(D0 → π+π−) =











1.86 × 10−3 , (Naive Factorization)
1.69 × 10−3 , (QCD Factorization)
(1.364 ± 0.032) × 10−3 , (PDG06[9])

BR(D+ → π+π0) =











1.68 × 10−3 , (Naive Factorization)
1.94 × 10−3 , (QCD Factorization)
(1.28 ± 0.09) × 10−3 , (PDG06[9])

BR(D0 → π0π0) =











2.44 × 10−5 , (Naive Factorization)
2.06 × 10−5 , (QCD Factorization)
(7.9 ± 0.8) × 10−4 . (PDG06[9])

Both the naive factorization and the QCD factorization predictions on D0 → π+π− and
D+ → π+π0 can accommodate the experimental results to the same order, while the
prediction on D0 → π0π0 is about forty times smaller than the experimental result. For
proper perspective one should note that the modes D0 → π+π− and D+ → π+π0 are
described by color favored tree diagram T , whereas D0 → π0π0 is dominated by a color
suppressed tree diagram C. Non-factorizable corrections are found to be larger for the
latter and at present are beyond theoretical control.

In summary, a theoretical description of exclusive nonleptonic decays of charmed
mesons based on general principles is not yet possible. Even though the short distance
contributions can be calculated and the effective weak Hamiltonian has been constructed
at next-to-leading order, the evaluation of its matrix elements requires nonperturbative
techniques. Some decent phenomenological descriptions have been achieved, yet realisti-
cally few frameworks can provide some openings for systematic improvements, especially
when they are applied to multi-body channels.

2.6 Symmetry Analysis

2.6.1 Isospin SU(2) Symmetry

Symmetry based arguments are a powerful tool in our theoretical arsenal. Isospin invari-
ance should hold on the O(1%) level, and no evidence to the contrary has been found.
Take two-body decays as an example, it leads to triangle relations among the decay am-
plitudes:

A(D0 → π+π−) +
√

2A(D0 → π0π0) −
√

2A(D+ → π+π0) = 0 , (15)

A(D0 → K−π+) +
√

2A(D0 → K̄0π0) −A(D+ → K̄0π+) = 0 , (16)
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A(D0 → π+K∗−) +
√

2A(D0 → π0K̄∗0) −A(D+ → π+K̄∗0) = 0 , (17)

A(D0 → ρ+K−) +
√

2A(D0 → ρ0K̄0) −A(D+ → K̄0ρ+) = 0 . (18)

The measured rates tell us that these amplitudes possess large relative phases due to
strong FSI. Considering the three D → ππ modes, the transition amplitudes can be
decomposed into

A(D0 → π+π−) =
√

2
3
A0 +

√

1
3
A2 , (19)

A(D0 → π0π0) =
√

1
3
A0 −

√

2
3
A2 , (20)

A(D+ → π+π0) =
√

3
2
A2 . (21)

The subscripts 0 and 2 of the A describe the isospin I = 0 and 2 part of the ππ system.
From the experimental data, the amplitude ratio |A2/A0| and the relative phase δ = δ2−δ0

were extracted [10]

|A2/A0| = 0.72 ± 0.13 ± 0.11 , cos δ = 0.14 ± 0.13 ± 0.09 . (22)

2.6.2 Flavor SU(3) Symmetry and Its Breaking

It would seem tempting to argue that SU(3) flavor symmetry holds to within, say, 20 -
30 %. This, however, does not seem to be the case, at least not for exclusive channels, as
can be read off most dramatically from the following comparison

A(D0 → K+K−)

A(D0 → π+π−)
' 1.8 (23)

rather than unity. The significant SU(3) symmetry violation may come from the finite
strange quark mass, FSI and resonances [11]. There are indications, however, that for
inclusive rates SU(3) flavor breaking does not exceed the 20% level [12].

3 Two-Body Decays

Two-body modes in charmed meson nonleptonic decays have been drawn much attention
since 1980s because they have the following advantages, as compared with multi-body
ones, that put them to a heated place:

• The nonleptonic decays of charm mesons have been observed to proceed mainly
through two-body channels, if one counts resonances as one body. A great number
of precise experimental data on two-body decays, including branching ratios of about
60 decay modes, have been accumulated in the Particle Data Group [9].

• The phase space is trivial and the number of form factors are quite limited.

• There are less colour sources in the form of quarks and antiquarks, less different
combinations for colour flux tubes to form.
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• Quite a number of two-body modes allow for sizeable momentum transfers thus
hopefully reducing the predominance of long-distance dynamics.

• They are one class of nonleptonic decays where one can harbor reasonable hope of
some success. It is not utopian to expect lattice QCD to treat these transitions
some day in full generality. Such results will however be reliable only, if obtained
with incorporating fully dynamical fermions – i.e. without ”quenching” and without
relying on a 1/mc expansion.

3.1 Kinematics and Topologies of Amplitudes

In the center-of-mass frame, the differential decay rate for n-body charmed meson decay
is

dΓ =
1

2mD

(
n
∏

i=1

d3pi

(2π)3

1

2Ei

)|A(mD → {p1, p2, · · · , pn})|2(2π)4δ4(pD −
n
∑

i=1

pi). (24)

If the number of final state particles is set to two, one can easily conduct the integral over
the phase space to obtain the decay rate

Γ(D → f1f2) =
p

8πM2
D

|A|2 , (25)

where

p =

√

(M2
D − (m1 + m2)2)(M2

D − (m1 − m2)2)

2MD

denotes the center-of-mass 3-momentum of each final particle. The branching fraction of
D → f1f2 transition is then defined as the ratio of the decay rate to the full width of D
meson

B(D → f1f2) =
Γ(D → f1f2)

Γ(D)
. (26)

The amplitude A can be decomposed into six distinct quark-graph topologies [13]: (1)
color-favored tree amplitude T , (2) color-suppressed tree amplitude C, (3) W-exchange
amplitude E, (4) W-annihilation amplitude A, (5) horizontal W-loop amplitude P and
(6) vertical W-loop amplitude D. The penguin diagrams P and D play little role in
practice because the relation of the CKM matrix elements V ∗

csVus ≈ −V ∗

cdVud will result
in cancellations among them.

3.2 D → PP , D → PV and D → V V Decays

Among the measured experimental data on charm nonleptonic two-body decays, charmed
mesons decaying to two pseudoscalar mesons (D → PP ), to one pseudoscalar and one
vector meson (D → PV ) and to two vector mesons (D → V V ) are of dominant quality.
The light pseudoscalar and vector mesons are two classes of particles that have been made
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clear on their basic properties like mass, lifetime, width, quark component and decay
rate. The form factors of charmed mesons transiting to light pseudoscalar and vector
mesons have been calculated in a variety of theoretical models. Based on the resulting
form factors, most predictions on charmed meson semileptonic decays are consistent with
experimental data, as shown in Section 26.2. As a result, it is an ideal place to test
the factorization assumption and understand the mysteries of FSI and unfactorizable
contributions.

Provided that the definitions of form factors are adopted as in Equations (26.36) and
(26.42), the four relevant amplitudes for D → P1P2 in the formalism of factorization
approach read

T = i
GF√

2
Vq1q2

V ∗

cq3
a1fP1

(m2
D
− m2

2
)F D→P2

0 (m2
1
), (27)

C = i
GF√

2
Vq1q2

V ∗

cq3
a2fP1

(m2
D
− m2

2
)F D→P2

0 (m2
1
), (28)

E = i
GF√

2
Vq1q2

V ∗

cq3
a2fD

(m2
1
− m2

2
)F P1P2

0 (m2
D
), (29)

A = i
GF√

2
Vq1q2

V ∗

cq3
a1fD

(m2
1
− m2

2
)F P1P2

0 (m2
D
). (30)

The amplitudes for D → PV are a little more complicated than D → PP , for one
should distinguish the pseudoscalar or the vector final state where the spectator quark
enters. Using a subscript P or V to denote the spectator quark containing in pseudoscalar
or vector final meson, one can read out the amplitudes

TV = 2
GF√

2
Vq1q2

V ∗

cq3
a1fP

m
V
(ε∗ · p

D
)AD→V

0 (m2
P
), (31)

TP = 2
GF√

2
Vq1q2

V ∗

cq3
a1fV

m
V
(ε∗ · p

D
)F D→P

+ (m2
V
), (32)

CV = 2
GF√

2
Vq1q2

V ∗

cq3
a2fP

m
V
(ε∗ · p

D
)AD→V

0 (m2
P
), (33)

CP = 2
GF√

2
Vq1q2

V ∗

cq3
a2fV

m
V
(ε∗ · p

D
)F D→P

+ (m2
V
), (34)

E = 2
GF√

2
Vq1q2

V ∗

cq3
a2fD

m
V
(ε∗ · p

D
)APV

0 (m2
D
), (35)

A = 2
GF√

2
Vq1q2

V ∗

cq3
a1fD

m
V
(ε∗ · p

D
)APV

0 (m2
D
). (36)

The decay modes of charm to two vector meson final states have a richer structure
than the decays with at least one pseudoscalar in the final state.

T (D → V1V2) =
GF√

2
Vq

1
q
2
V ∗

cq
3
a1[ifV1

m
1
(m

D
+ m

2
)AD→V2

1 (m2
1
)ε∗

1
· ε∗

2
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−i
1

m
D

+ m
2

f
V1

m
1
AD→V2

2 (m2
1
)ε∗

1
· (p

D
+ p

2
)ε∗

2
· (p

D
− p

2
)

− 2

m
D

+ m
2

f
V1

m
1
V D→V2(m2

1
)εµναβε∗µ

1
ε∗ν

2
pα

D
pβ

2
] , (37)

C(D → V1V2) =
GF√

2
Vq

1
q
2
V ∗

cq
3
a2[ifV1

m
1
(m

D
+ m

2
)AD→V2

1 (m2
1
)ε∗

1
· ε∗

2

−i
1

m
D

+ m
2

f
V1

m
1
AD→V2

2 (m2
1
)ε∗

1
· (p

D
+ p

2
)ε∗

2
· (p

D
− p

2
)

− 2

m
D

+ m
2

f
V1

m
1
V D→V2(m2

1
)εµναβε∗µ

1
ε∗ν

2
pα

D
pβ

2
] . (38)

The terms proportional to A1, A2 and V represent S, longitudinal D and P waves re-
spectively. The omitted expressions for exchange and annihilation topologies contain the
vector-to-vector form factor.

Due to the historical phenomenological analysis, we can draw some general conclusions
on the above factorization formalism, which serve as guides for the studies of the other
charmed meson decay modes like two-body final states containing scalar (S), axial-vector
(A), tensor (T ) and multi-body final states.

• Nonfactorizable corrections which result from spectator interactions, FSI, resonance
effects and so on are found to be significant [14]. Some phenomenological models
based on one-particle-exchange method [15], resonance formation [16], the combina-
tion of heavy quark effective theory and chiral perturbation theory [17] have been
developed to make some insights into them. The resonance formation via qq̄ reso-
nances is probably the most important one to hadronic charm decays owing to the
existence of an abundant spectrum of resonances known to exist at energy close
to the mass of charmed mesons. Most of the properties of resonances follow from
unitarity so that the effects of resonance-induced nonfactorizable contributions can
be described in a model independent manner in terms of the masses and the decay
widths of the nearby resonances [18].

• The parameters a1 and a2 were found to be not universal but process or class
dependent. For illustration purposes, we take some examples

a1(µ) = c1(µ) + (
1

Nc

+ χ1(µ))c2(µ) , (39)

a2(µ) = c2(µ) + (
1

Nc

+ χ2(µ))c1(µ) , (40)

with χ1(µ) and χ2(µ) partially denoting nonfactorizable effects in the case of Nc = 3.
χ2(µ) was determined to be [19]

χ2(D → K̄π) ' −0.33 ,

χ2(D → K̄∗π) ' −(0.45 ∼ 0.55) ,

χ2(D → K̄∗ρ) ' −(0.6 ∼ 0.65) . (41)
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• The light meson to light meson form factors involving in the above formula are
believed to be negligibly small. Thus the factorizable formalism of the exchange
and annihilation diagrams make no effect on the overall amplitudes. The main
contributions of these diagrams may result from the nonfactorizable parts. Through
intermediate states, they relate to the tree diagram T and color-suppressed diagram
C [18, 20]. As a consequence, they have sizable magnitudes comparable to the T
and C amplitudes and large strong phases relative to the T amplitude as illustrated
in a SU(3) flavor symmetry analysis [21, 22]. Especially in the case of decay mode

D0 → K0K
0

which transits thoroughly through E − E diagram representation,
the factorizable contribution is too trivial to be consistent with the experimental
branching ratio B = (7.1 ± 1.9) × 10−4. Many studies have been perform on this
decay [23] and it is found that the nonfactorizable correction of E diagram can
account for experimental data to the same order.

A variety of charmed meson decay processes calculated in some literatures are pre-
sented in Table 1 for D → PP decays and in Table 2 for D → PV decays. It is noted that
all of these considerations have introduced more or less free parameters to describe the
nonfactorizable contributions and need to be fitted out from experiments. For D → V V
decays, some research articles in ten years ago can be found in [17, 26, 27, 28].

3.3 D → SP Decays

Scalar meson production measurements in charm decays are now available from the ded-
icated experiments conducted at ARGUS [29], CLEO [30], E687 [31], E691 [32], E791
[33], FOCUS [34], and BaBar [35]. Specifically, the decays D → f0π(K), D → a0π(K),
D → K

∗

0π and D+ → σπ+ have been observed through Dalitz plot analysis of three-
body decays. The results of various experiments are summarized in Table 3 where
the products of B(D → SP3) and B(S → P1P2) are listed. In order to extract the
branching ratios for D → f0P , one shall use the the result from a recent analysis [36]:
Γ(f0 → ππ) = (64±8)MeV , Γ(f0 → KK) = (12±1)MeV and Γf0 total = (80±10)MeV .
Therefore, one has

B(f0(980) → K+K−) = 0.08 ± 0.01 , B(f0(980) → π+π−) = 0.53 ± 0.09 . (42)

For D → a0P , one can apply the PDG average Γ(a0 → KK)/Γ(a0 → πη) = 0.183±0.024
[9] to obtain

B(a0
0(980) → π0η) = 0.845 ± 0.017

B(a+
0 (980) → K+K

0
) = B(a−

0 (980) → K−K0) = 0.155 ± 0.017 ,

B(a0
0(980) → K+K−) = 0.078 ± 0.009 . (43)

For D → K∗

0(1430)P , B(K∗

0 (1430) → K+π−) = 2
3
(0.93 ± 0.10) can be put to application

[9]. It is worth noting that some of the scalar meson decays are not shown in PDG.
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Table 1: Predicted branching ratios for D → PP (in 10−2). Most decay modes involving a

neutral K meson are given as K0
S in PDG06 instead of K

0
in PDG04 which are presented

here as well.

Decay Modes Buccella et al. [24] Du et al.[15] Wu et al. [25] PDG 06/04

D0 → K−π+ 3.847 3.72 3.79 ; 3.80 3.80 ± 0.07

→ K
0
π0 1.310 2.09 2.27 ; 2.24 2.28 ± 0.22 (pdg04)

1.14 ± 0.12

→ K
0
η 0.80 ; 0.81 0.76 ± 0.11 (pdg04)

0.38 ± 0.06

→ K
0
η ′ 1.85 ; 1.88 1.87 ± 0.28 (pdg04)

0.91 ± 0.14
→ π+π− 0.151 0.149 0.144 ; 0.144 0.1364 ± 0.0032
→ π0π0 0.115 0.106 0.078 ; 0.097 0.079 ± 0.008
→ K+K− 0.424 0.40 0.413 ; 0.413 0.384 ± 0.010

→ K0K
0

0.130 0.0573 0.069 ; 0.062 0.071 ± 0.019 (pdg04)
0.037 ± 0.007

→ K+π− 0.033 0.0141 0.0150 ; 0.0151 0.0143 ± 0.0004
→ ηπ0 0.069 ; 0.068 0.056 ± 0.014
→ η ′π0 0.088 ; 0.091 —
→ ηη 0.011 ; 0.016 —
→ ηη ′ 0.026 ; 0.030 —
→ K0π0 0.008 0.0284 0.002 ; 0.005 —
→ K0η 0.001 ; 0.002 —
→ K0η ′ 0.0 ; 0.0 —

D+ → K
0
π+ 2.939 2.76 ; 2.76 2.77 ± 0.18 (pdg04)

1.47 ± 0.06
→ π+π0 0.185 0.18 0.25 ; 0.19 0.128 ± 0.009
→ ηπ+ 0.34 ; 0.37 0.35 ± 0.032
→ η′π+ 0.45 ; 0.42 0.53 ± 0.11

→ K+K
0

0.764 0.64 0.62 ; 0.62 0.58 ± 0.06 (pdg04)
0.296 ± 0.019

→ K0π+ 0.053 0.0756 0.012 ; 0.026 —
→ K+π0 0.055 0.0296 0.021 ; 0.023 < 0.042
→ K+η 0.011 ; 0.012 —
→ K+η′ 0.005 ; 0.006 —

D+
s → K

0
K+ 4.623 3.06 ; 3.13 4.4 ± 0.9

→ π+η 1.131 1.05 ; 1.09 2.11 ± 0.35
→ π+η ′ 4.19 ; 4.43 4.7 ± 0.7
→ π+K0 0.373 0.24 ; 0.26 < 0.9
→ π0K+ 0.146 0.047 ; 0.090 —
→ ηK+ 0.300 0.055 ; 0.040 —
→ η ′K+ 0.090 ; 0.102 —
→ K+K0 0.012 0.014 ; 0.010 —
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Table 2: Predicted branching ratios for D → PV (in 10−2). Most decay modes involving a

neutral K meson are given as K0
S in PDG06 instead of K

0
in PDG04 which are presented

here as well.

Decay Modes Buccella et al. [24] Du et al.[15] Wu et al. [25] PDG 06/04
D0 → K∗−π+ 4.656 5.22 5.93 ; 5.97 5.9 ± 0.4 (pdg04)

→ K−ρ+ 11.201 11.1 9.99 ; 9.90 10.1 ± 0.8 (pdg04)

→ K
∗0

π0 3.208 2.72 2.72 ; 2.81 2.8 ± 0.4 (pdg04)

→ K
0
ρ0 0.759 1.25 1.49 ; 1.25 1.55+0.12

−0.16 (pdg04)

→ K
∗0

η 1.50 ; 1.94 1.8 ± 0.4 (pdg04)

→ K
0
ω 1.855 2.11 ; 1.80 2.3 ± 0.4 (pdg04)

1.1 ± 0.2

→ K
0
φ 0.95 ; 0.90 0.94 ± 0.11 (pdg04)

→ K+K∗− 0.290 0.25 ; 0.25 0.20 ± 0.11
→ K−K∗+ 0.431 0.43 ; 0.43 0.37 ± 0.08

→ K0K
∗0

0.052 0.08 ; 0.16 < 0.17 (pdg04)
< 0.08

→ K
0
K∗0 0.062 0.08 ; 0.16 < 0.09 (pdg04)

< 0.04
→ π0φ 0.105 0.12 ; 0.12 0.074 ± 0.005

→ K
∗0

η ′ 0.004 ; 0.003 < 0.10 (pdg04)
→ ηφ 0.035 ; 0.034 0.014 ± 0.004
→ π+ρ− 0.485 0.36 0.34 ; 0.35 0.45 ± 0.04
→ π−ρ+ 0.706 0.73 0.62 ; 0.61 1.0 ± 0.06
→ π0ρ0 0.216 0.11 0.19 ; 0.16 0.32 ± 0.04
→ π0ω 0.013 0.020 ; 0.003 < 0.026
→ ηω 0.13 ; 0.10
→ η ′ω 0.0007 ; 0.0003
→ ηρ0 0.0039 ; 0.0015
→ η ′ρ0 0.039 0.012 ; 0.009
→ K∗+π− 0.025 0.029 ; 0.029
→ K+ρ− 0.004 0.016 ; 0.016
→ K∗0π0 0.008 0.0052 ; 0.0064
→ K0ρ0 0.0069 ; 0.0059
→ K∗0η 0.0030 ; 0.0041
→ K∗0η′ 0.0 ; 0.0
→ K0ω 0.002 0.0076 ; 0.0056
→ K0φ 0.0 ; 0.0006
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Table 2: (continued) Predicted branching ratios for D → PV (in 10−2). Most decay modes

involving a neutral K meson are given as K0
S in PDG06 instead of K

0
in PDG04 which

are presented here as well.

Decay Modes Buccella et al. [24] Du et al.[15] Wu et al. [25] PDG 06/04

D+ → K
∗0

π+ 1.996 1.93 1.96 ; 1.96 1.95 ± 0.19 (pdg04)
→ π+φ 0.619 0.64 ; 0.62 0.65 ± 0.07

→ K
0
ρ+ 12.198 7.01 7.56 ; 8.43 6.6 ± 2.5 (pdg04)

→ π+ρ0 0.104 0.13 0.088 ; 0.088 0.107 ± 0.011

→ K+K
∗0

0.436 0.44 ; 0.44 0.43 ± 0.06 (pdg04)

→ K
0
K∗+ 1.515 1.43 ; 1.25 3.1 ± 1.4 (pdg04)

1.6 ± 0.7
→ K+ρ0 0.029 0.030 ; 0.025 0.025 ± 0.007
→ K∗0π+ 0.027 0.024 ; 0.022 0.030 ± 0.006
→ K+φ 0.0066 ; 0.0067 < 0.013 (pdg04)
→ π+ω 0.57 ; 0.58 < 0.034
→ ηρ+ 0.24 ; 0.43 < 0.7
→ η′ρ+ 0.15 ; 0.15 < 0.6
→ π0ρ+ 0.451 0.31 0.28 ; 0.35
→ K0ρ+ 0.042 0.025 ; 0.022
→ π0K∗+ 0.057 0.037 ; 0.036
→ K+ω 0.012 ; 0.011
→ K∗+η 0.015 ; 0.015
→ K∗+η′ 0.00014 ; 0.00016

D+
s → K

∗0
K+ 4.812 3.34 ; 3.42 3.3 ± 0.9 (pdg04)

→ K
0
K∗+ 2.467 4.98 ; 4.66 5.3 ± 1.3

→ π+ρ0 0.06 ; 0.06 < 0.07 (pdg04)
→ π+φ 4.552 3.08 ; 2.93 4.4 ± 0.6
→ π+K∗0 0.445 0.33 ; 0.35 0.65 ± 0.28 (pdg04)
→ K+ρ0 0.198 0.12 ; 0.12 0.26 ± 0.07
→ K+φ 0.008 0.032 ; 0.033 < 0.06
→ K+ω 0.178 0.40 ; 0.39
→ K0ρ+ 1.288 0.91 ; 0.77
→ π0K∗+ 0.076 0.13 ; 0.13
→ ηK∗+ 0.146 0.038 ; 0.047
→ η ′K∗+ 0.068 ; 0.059
→ K∗0K+ 0.006 0.0015 ; 0.0015
→ K∗+K0 0.018 0.0076 ; 0.0085
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Table 3: Experimental branching ratios of various D → SP decays measured by ARGUS,
E687, E691, E791, CLEO, FOCUS and BaBar. For simplicity and convenience, The
mass identification for f0(980), a0(980) and K∗

0 (1430) have been dropped.

Collaboration B(D → SP ) × B(S → P1P2) B(D → SP )
PDG06 B(D+ → f0π+)B(f0 → π+π−) = (2.1 ± 0.5) × 10−4 B(D+ → f0π+) = (4.0 ± 1.2) × 10−4

E791 B(D+ → f0π+)B(f0 → π+π−) = (1.9 ± 0.5) × 10−4 B(D+ → f0π+) = (3.6 ± 1.1) × 10−4

FOCUS B(D+ → f0K+)B(f0 → K+K−) = (3.84 ± 0.92) × 10−5 B(D+ → f0K+) = (4.8 ± 1.3) × 10−4

PDG06 B(D+ → f0K+)B(f0 → π+π−) = (5.7 ± 3.5) × 10−5 B(D+ → f0K+) = (1.1 ± 0.7) × 10−4

FOCUS B(D+ → f0K+)B(f0 → π+π−) = (6.12 ± 3.65) × 10−5 B(D+ → f0K+) = (1.2 ± 0.7) × 10−4

FOCUS B(D+ → a0
0
π+)B(a0

0
→ K+K−) = (2.38 ± 0.47) × 10−3 B(D+ → a0

0
π+) = (3.1 ± 0.7)%

E791 B(D+ → σπ+)B(σ → π+π−) = (1.4 ± 0.3) × 10−3 B(D+ → σπ+) = (2.1 ± 0.5) × 10−3

E791 B(D+ → κπ+)B(κ → K−π+) = (4.4 ± 1.2)% B(D+ → κπ+) = (6.5 ± 1.9)%

E691,E687 B(D+ → K
∗0

0 π+)B(K
∗0

0 → K−π+) = (2.3 ± 0.3)% B(D+ → K
∗0

0 π+) = (3.7 ± 0.6)%

PDG06 B(D+ → K
∗0

0 π+)B(K
∗0

0 → K−π+) = (2.41 ± 0.24)% B(D+ → K
∗0

0 π+) = (3.9 ± 0.6)%

E791 B(D+ → K
∗0

0 π+)B(K
∗0

0 → K−π+) = (1.14 ± 0.16)% B(D+ → K
∗0

0 π+) = (1.8 ± 0.3)%

PDG06 B(D+ → K
∗0

0 K+)B(K
∗0

0 → K−π+) = (3.7 ± 0.4) × 10−3 B(D+ → K
∗0

0 K+) = (6.0 ± 0.9) × 10−3

PDG06 B(D+ → f0(1370)π+)B(f0(1370) → π+π−) = (8 ± 6) × 10−5

FOCUS B(D+ → f0(1370)π+)B(f0(1370) → K+K−) = (6.2 ± 1.1) × 10−4

PDG06 B(D0 → σπ0)B(f0 → π+π−) < 2.7 × 10−5 B(D0 → σπ0) < 4.1 × 10−5

PDG06 B(D0 → f0π0)B(f0 → π+π−) < 3.4 × 10−6 B(D0 → f0π0) < 6.4 × 10−6

PDG06 B(D0 → f0K0
s )B(f0 → π+π−) = (1.36+0.30

−0.22
) × 10−3 B(D0 → f0K0

s ) = (2.6+0.7
−0.6

) × 10−3

ARGUS,E687 B(D0 → f0K
0
)B(f0 → π+π−) = (3.2 ± 0.9) × 10−3 B(D0 → f0K

0
) = (6.0 ± 2.0) × 10−3

CLEO B(D0 → f0K
0
)B(f0 → π+π−) = (2.5+0.8

−0.5
) × 10−3 B(D0 → f0K

0
) = (4.7+1.7

−1.2
) × 10−3

PDG06 B(D0 → f0K0
s )B(f0 → K+K−) < 1.0 × 10−4 B(D0 → f0K0

s ) < 1.3 × 10−3

BaBar B(D0 → f0K
0
)B(f0 → K+K−) = (1.2 ± 0.9) × 10−3 B(D0 → f0K

0
) = (1.5 ± 1.1)%

PDG06 B(D0 → a+

0
K−)B(a+

0
→ K+K0

s ) = (6.1 ± 1.8) × 10−4 B(D0 → a+

0
K−) = (7.9 ± 2.5)−3

BaBar B(D0 → a+

0
K−)B(a+

0
→ K+K

0
) = (3.3 ± 0.8) × 10−3 B(D0 → a+

0
K−) = (2.1 ± 0.6)%

PDG06 B(D0 → a−

0
K+)B(a−

0
→ K−K0

s ) < 1.1 × 10−4 B(D0 → a−

0
K+) < 1.4 × 10−3

BaBar B(D0 → a−

0
K+)B(a−

0
→ K−K

0
) = (3.1 ± 1.9) × 10−4 B(D0 → a−

0
K+) = (2.0 ± 1.2) × 10−3

PDG06 B(D0 → a0
0
K0

s )B(a0
0
→ K+K−) = (3.0 ± 0.4) × 10−3 B(D0 → a0

0
K0

s ) = (3.8 ± 0.7)%

BaBar B(D0 → a0
0
K

0
)B(a0

0
→ K+K−) = (5.9 ± 1.3) × 10−3 B(D0 → a0

0
K

0
) = (7.6 ± 1.9)%

BaBar B(D0 → a+

0
π−)B(a+

0
→ K+K

0
) = (5.1 ± 4.2) × 10−4 B(D0 → a+

0
π−) = (3.3 ± 2.7) × 10−3

BaBar B(D0 → a−

0
π+)B(a−

0
→ K−K0) = (1.43 ± 1.19) × 10−4 B(D0 → a−

0
π+) = (9.2 ± 7.7) × 10−4

PDG06 B(D0 → K∗−

0
π+)B(K∗−

0
→ K0

s π−) = (2.8+0.6
−0.4

) × 10−3 B(D0 → K∗−

0
π+) = (9.0+2.3

−1.7
)−3

ARGUS,E687 B(D0 → K∗−

0
π+)B(K∗−

0
→ K

0
π−) = (7.3 ± 1.6) × 10−3 B(D0 → K∗−

0
π+) = (1.2 ± 0.3)%

CLEO B(D0 → K∗−

0
π+)B(K∗−

0
→ K

0
π−) = (4.3+1.9

−0.8
) × 10−3 B(D0 → K∗−

0
π+) = (7.0+3.2

−1.5
) × 10−3

PDG06 B(D0 → K∗−

0
π+)B(K∗−

0
→ K−π0) = (4.6 ± 2.2) × 10−3 B(D0 → K∗−

0
π+) = (1.5 ± 0.7)%

CLEO B(D0 → K∗−

0
π+)B(K∗−

0
→ K−π0) = (3.6 ± 0.8) × 10−3 B(D0 → K∗−

0
π+) = (1.2 ± 0.3)%

PDG06 B(D0 → K
∗0

0 π0)B(K
∗0

0 → K−π+) = (5.8+4.6
−1.5) × 10−3 B(D0 → K

∗0

0 π0) = (9.4+7.5
−2.6) × 10−3

CLEO B(D0 → K
∗0

0 π0)B(K
∗0

0 → K−π+) = (5.3+4.2
−1.4) × 10−3 B(D0 → K

∗0

0 π0) = (8.5+6.8
−2.5) × 10−3

PDG06 B(D0 → f0(1370)K0
s )B(f0(1370) → π+π−) = (2.5 ± 0.6) × 10−3

PDG06 B(D0 → a0K0
s )B(a0 → ηπ0) = (6.2 ± 2.0) × 10−3

ARGUS,E687 B(D0 → f0(1370)K
0
)B(f0(1370) → π+π−) = (4.7 ± 1.4) × 10−3

CLEO B(D0 → f0(1370)K
0
)B(f0(1370) → π+π−) = (5.9+1.8

−2.7
) × 10−3

PDG06 B(D0 → f0(1400)K0
s )B(f0(1400) → K+K−) = (1.7 ± 1.1) × 10−4

PDG06 B(D+
s → f0π+)B(f0 → K+K−) = (5.7 ± 2.5) × 10−3 B(D+

s → f0π+) = (7.1 ± 3.2)%

E687 B(D+
s → f0π+)B(f0 → K+K−) = (4.9 ± 2.3) × 10−3 B(D+

s → f0π+) = (6.1 ± 3.0)%

E791 B(D+
s → f0π+)B(f0 → π+π−) = (5.7 ± 1.7) × 10−3 B(D+

s → f0π+) = (1.1 ± 0.4)%

FOCUS B(D+
s → f0π+)B(f0 → π+π−) = (9.5 ± 2.7) × 10−3 B(D+

s → f0π+) = (1.8 ± 0.6)%

FOCUS B(D+
s → f0π+)B(f0 → K+K−) = (7.0 ± 1.9) × 10−3 B(D+

s → f0π+) = (8.8 ± 2.6)%

FOCUS B(D+
s → f0K+)B(f0 → K+K−) = (2.8 ± 1.3) × 10−4 B(D+

s → f0K+) = (3.5 ± 1.7) × 10−3

PDG06 B(D+
s → K

∗0

0 K+)B(K
∗0

0 → K−π+) = (4.8 ± 2.5) × 10−3 B(D+
s → K

∗0

0 K+) = (7.7 ± 4.1) × 10−3

E687 B(D+
s → K

∗0

0 K+)B(K
∗0

0 → K−π+) = (4.3 ± 2.5) × 10−3 B(D+
s → K

∗0

0 K+) = (6.9 ± 4.1) × 10−3

FOCUS B(D+
s → K∗0

0
π+)B(K∗0

0
→ K+π−) = (1.4 ± 0.8) × 10−3 B(D+

s → K∗0
0

π+) = (2.3 ± 1.3) × 10−3

E791 B(D+
s → f0(1370)π+)B(f0(1370) → π+π−) = (3.3 ± 1.2) × 10−3
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More precise measurements of these branching ratios are of great importance for studies
of charmed meson to scalar meson transitions.

The theoretical studies of D → SP are very similar to D → PP except for the fact
that the quark structure of the scalar mesons, especially f0(980) and a0(980), is still not
clear (for a review, one can refer to [37] and references therein). Hence, one is facing a
’Scylla and Charybdis’ dilemma at the moment when thinking to the limited theoretical
control on the significant nonfactorized contributions as well. Yet it is without doubt
that the study of charmed meson decays will open a new avenue to the understanding of
the light scalar meson spectroscopy. One might resort to the knowledge resulting from
D → PP and D → PV modes and try to make new understanding on some old puzzles
related to the internal structure and parameters, e.g. the masses and widths, of light
scalar mesons through the study of D → SP [38, 39, 40]. Or vice versa, one can start
from the assumed structure of scalar mesons and make some predictions on the decays
[41, 42, 43]. Some of the theoretical results in the literature are given in Table 4. In either
case, the following factorization formula are useful.

TS = −GF√
2
Vq1q2

V ∗

cq3
a1fP

(m2
D
− m2

S
)F D→S

0 (m2
P
), (44)

TP = −GF√
2
Vq1q2

V ∗

cq3
a1fS

(m2
D
− m2

P
)F D→P

0 (m2
S
), (45)

CS = −GF√
2
Vq1q2

V ∗

cq3
a2fP

(m2
D
− m2

S
)F D→S

0 (m2
P
), (46)

CP = −GF√
2
Vq1q2

V ∗

cq3
a2fS

(m2
D
− m2

P
)F D→P

0 (m2
S
). (47)

3.4 D → AP Decays

There are two different types of axial vector mesons: 3P1 and 1P1, which carry the quantum
numbers JPC = 1++ and 1+−, respectively. The isovector non-strange axial vector mesons
a1(1260) and b1(1235) which correspond to 3P1 and 1P1, respectively, cannot have mixing
because of the opposite C-parities. However, the isodoublet strange ones K1(1270) and
K1(1400) are a mixture of 3P1 and 1P1 states due to the strange and non-strange light
quark mass difference. One can usually write

K1(1270) = K1A sin θ + K1B cos θ ,

K1(1400) = K1A cos θ − K1B sin θ , (48)

where K1A and K1B are the strange partners of a1(1260) and b1(1235) respectively.
Two-body hadronic D → AP decays have been studied in [44, 45, 46, 47, 48, 49, 50].

Under the factorization approximation, the decay amplitudes read

TA = 2
GF√

2
Vq1q2

V ∗

cq3
a1fP

m
A
(ε∗ · p

D
)AD→A

0 (m2
P
), (49)
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Table 4: Branching ratios for various D → SP decays. Experimental results are taken
from Table 3.

Decay Buccella etal .[41] Cheng [40] Experiments
D+ → f0π

+ 2.8 × 10−4 3.5 × 10−4 (3.6 ± 1.1) × 10−4

→ f0K
+ 2.3 × 10−5 2.2 × 10−5 ∼ 10−4

→ a+
0 K

0
6.4 × 10−3 1.7 × 10−2

→ a0
0π

+ 5.9 × 10−4 1.7 × 10−3 (3.1 ± 0.7)%
→ σπ+ input (2.1 ± 0.5) × 10−3

→ κπ+ input (6.5 ± 1.9)%

→ K
∗0
0 π+ input (1.8 ± 0.3)%

→ a0
0π

+ 5.9 × 10−4

→ a+
0 π0 1.2 × 10−4

→ a+
0 η 7.4 × 10−4

→ a0
0K

+ 6.2 × 10−5

→ f0K
+ 2.3 × 10−5

D0 → f0K
0

7.4 × 10−4 input ∼ 10−3 − 10−2

→ a+
0 K− 7.8 × 10−4 1.1 × 10−3 (2.1 ± 0.6)%

→ a0
0K

0
2.2 × 10−3 3.6 × 10−3 (7.6 ± 1.9)%

→ a−

0 K+ 4.0 × 10−5 7.9 × 10−5 (2.0 ± 1.2) × 10−3

→ a+
0 π− 3.0 × 10−5 6.5 × 10−5 (3.3 ± 2.7) × 10−3

→ a−

0 π+ 7.0 × 10−4 1.3 × 10−3 (9.2 ± 7.7) × 10−4

→ K∗−

0 π+ 1.1 × 10−2 ∼ 10−3 − 10−2

→ K
∗0
0 π0 3.7 × 10−3 (8.5+6.8

−2.5) × 10−3

→ f0π
0 6.0 × 10−6

→ f0η 4.0 × 10−5

→ a0
0π

0 1.1 × 10−4

→ a0
0η 1.5 × 10−4

D+
s → f0π

+ 1.1% input (1.8 ± 0.6)%
→ f0K

+ 6.9 × 10−4 1.2 × 10−3 (3.5 ± 1.7) × 10−3

→ K
∗0
0 K+ 1.5 × 10−3 (6.9 ± 4.1) × 10−3

→ K∗0
0 π+ 1.1 × 10−3 (2.3 ± 1.3) × 10−3

→ a+
0 K0 3.0 × 10−5

→ a0
0K

+ 7.0 × 10−5

→ a+
0 η 7.0 × 10−5
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TP = 2
GF√

2
Vq1q2

V ∗

cq3
a1fA

m
A
(ε∗ · p

D
)F D→P

+ (m2
A
), (50)

CA = 2
GF√

2
Vq1q2

V ∗

cq3
a2fP

m
A
(ε∗ · p

D
)AD→A

0 (m2
P
), (51)

CP = 2
GF√

2
Vq1q2

V ∗

cq3
a2fA

m
A
(ε∗ · p

D
)F D→P

+ (m2
A
). (52)

The predicted branching ratios from factorizable contributions for D0 → K−a+
1 and D0 →

K−

1 (1270)π+ and that for D0 → K
0
a+

1 and D+ → K
0
1(1400)π+ in Refs. [44, 45, 46, 47, 48]

were too small by roughly a factor of 5 and 2, respectively, when compared with exper-
imental data. One argument is that the factorization approach may be only suitable
for energetic two-body decays like D → PP and D → PV ; for D → AP with very
little energy release, the approximation is questionable since the nonperturbative contri-
butions grow up. A recent analysis [50] considering the sizable FSI effects showed that
the predictions, which are presented in Table 5 and Table 6, are improved greatly.

Table 5: Branching ratios for D → Ka1(1260) and D → Kb1(1235). Most decay modes

involving a neutral K meson are given as K0
S in PDG06 instead of K

0
in PDG04 which

are presented here as well.

Theory [50]
Decay

without FSIs with FSIs
Experiment [9]

D+ → K
0
a+

1 (1260) 12.1% 12.1% (3.6 ± 0.6)%
(8.2 ± 1.7)% (pdg04)

D0 → K−a+
1 (1260) 3.8% 6.2% (7.5 ± 1.1)%

D0 → K
0
a0

1(1260) 3.3 × 10−4 5.6 × 10−4 < 1.9%

D+ → K
0
b+
1 (1235) 1.7 × 10−3 1.7 × 10−3

D0 → K−b+
1 (1235) 3.7 × 10−6 5.9 × 10−6

D0 → K
0
b0
1(1235) 3.9 × 10−4 6.7 × 10−4

3.5 D → TP Decays

The observed JP = 2+ tensor mesons f2(1270), f ′

2(1525), a2(1320) and K∗

2 (1430) form
an SU(3) 1 3P2 nonet with quark content qq̄. Hadronic charm decaying to a pseudoscalar
meson and a tensor meson f2(1270), a2(1320) or K∗

2 (1430) have been found in the earlier
measurements by ARGUS [29] and E687 [31], and in recent experiments from E791 [33],
CLEO [30], FOCUS [34] and BaBar [35], though some of them have not yet sufficient
statistical significance. The results of various experiments are summarized in Table 7
where the products of B(D → TP3) and B(T → P1P2) are shown. It is evident that
most of the listed D → TP decays have branching ratios of order 10−3, even though some
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of them are Cabibbo suppressed. In order to extract the branching ratios for D → TP
decays, one must use the branching fractions of the strong decays of the tensor mesons
[9]:

B(f2(1270) → ππ) = (84.7+2.5
−1.2)%, B(f2(1270) → KK) = (4.6 ± 0.4)%,

B(a2(1320) → KK) = (4.9 ± 0.8)%, B(K∗

2 (1430) → Kπ) = (49.9 ± 1.2)%.(53)

Theoretical calculations based on the factorization hypothesis were conducted to un-
derstand the experimental data [51, 52, 53]. Some of the results are listed in Table 8 where
one can find that most of the theoretical predictions are not consistent with the experi-

mental data. At first glance, some decays like D → K
∗

2(1430)K and D0 → f ′

2(1525)K
0

etal ., are kinematically not allowed as the total mass of the final state particles lies out-
side of the phase space for the decay. Nevertheless, it is physically allowed as some tensor
mesons have broad widths of order several hundred MeV [9].

3.6 Other Decay Modes

Measurements of other nonleptonic two-body modes, such as D → AV and so on , have
been done in experiment. PDG report two fairly large branching ratios [9]: B(D+ →
K

∗0
a1(1260)+) = (9.4±1.9)×10−3 and B(D+

s → φa1(1260)+) = (2.9±0.7)%, though the
total masses of their final state mesons exceed their phase spaces. Given the relevant form
factors, the branching fractions can be worked out by means of factorization approach.
Yet one doubt that how to evaluate the reliability of factorization in these decay modes
will arise since the nonfactorized corrections may be dominant due to the small momentum
transfer.

4 Three-Body Decays

4.1 Kinematics and Dalitz Plot

Starting from Equation (24) and integrating over the solid angles, the decay rate for
D → M1M2M3 can be obtained

dΓ =
1

(2π)3

1

32m3
D

|A|2dm2
12dm2

23 , (54)

where m
ij

is the invariant mass of particles i and j. For a given value of m2
12 in the range

(m1 + m2)
2 ≤ m2

12 ≤ (mD − m3)
2, the upper and lower bounds of m2

23 are determined

(m2
23)max = (E∗

2 + E∗

3)
2 − (

√

E∗2
2 − m2

2 −
√

E∗2
3 − m2

3)
2 , (55)

(m2
23)max = (E∗

2 + E∗

3)
2 − (

√

E∗2
2 − m2

2 +
√

E∗2
3 − m2

3)
2 . (56)
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Table 6: Branching ratios of D → K1(1270)π and D → K1(1400)π calculated for various
K1A − K1B mixing angles.

Theory [50]
Decay −37◦ −58◦ 37◦ 58◦

Experiment [9]

D+ → K
0
1(1270)π+ 6.4 × 10−3 7.8 × 10−3 2.9% 4.7% < 7 × 10−3

D+ → K
0
1(1400)π+ 2.9% 4.0% 6.6% 6.6% (4.3 ± 1.5)%

D0 → K−

1 (1270)π+ 6.3 × 10−3 5.5 × 10−3 4.9 × 10−4 4.4 × 10−5 (1.12 ± 0.31)%
D0 → K−

1 (1400)π+ 3.7 × 10−8 4.2 × 10−4 3.0 × 10−3 3.2 × 10−3 < 1.2%

D0 → K
0
1(1270)π0 8.4 × 10−3 8.4 × 10−3 8.4 × 10−3 8.4 × 10−3

D0 → K
0
1(1400)π0 5.7 × 10−3 5.5 × 10−3 5.7 × 10−3 5.5 × 10−3 < 3.7%

Table 7: Experimental branching ratios of various D → TP decays measured by BaBar,
CLEO, E791, FOCUS and PDG06. For simplicity and convenience, we have dropped the
mass identification for f2(1270), a2(1320) and K∗

2(1430).

Collaboration B(D → TP ) × B(T → P1P2) B(D → TP )
PDG06 B(D+ → f2π+)B(f2 → π+π−) = (4.8 ± 1.3) × 10−4 B(D+ → f2π+) = (8.5 ± 2.3) × 10−4

E791 B(D+ → f2π+)B(f2 → π+π−) = (6.0 ± 1.1) × 10−4 B(D+ → f2π+) = (1.1 ± 0.2) × 10−3

FOCUS B(D+ → f2π+)B(f2 → π+π−) = (3.8 ± 0.8) × 10−5 B(D+ → f2π+) = (6.8 ± 1.4) × 10−4

FOCUS B(D+ → f2π+)B(f2 → K+K−) = (7.0 ± 1.9) × 10−5 B(D+ → f2π+) = (3.1 ± 0.9) × 10−3

PDG06 B(D+ → K∗0
2

π+)B(K∗0
2

→ K+π−) = (5.2 ± 3.5) × 10−5 B(D+ → K∗0
2

π+) = (1.6 ± 1.1) × 10−4

E791 B(D+ → K
∗0

2 π+)B(K
∗0

2 → K−π+) = (4.6 ± 2.0) × 10−4 B(D+ → K
∗0

2 π+) = (1.4 ± 0.6) × 10−3

PDG06 B(D+ → a+

2
K0

S
) < 1.5 × 10−3

PDG06 B(D0 → f2K0
S
)B(f2 → π+π−) = (1.3+1.1

−0.7) × 10−4 B(D0 → f2K0
S
) = (2.3+2.0

−1.3) × 10−4

CLEO B(D0 → f2K
0
)B(f2 → π+π−) = (1.6+2.4

−1.3) × 10−4 B(D0 → f2K
0
) = (2.8+4.3

−2.3) × 10−3

BaBar B(D0 → a−

2
π+)B(a−

2
→ K0K−) = (3.5 ± 2.1) × 10−5 B(D0 → a−

2
π+) = (7.0 ± 4.3) × 10−4

PDG06 B(D0 → K∗−

2
π+)B(K∗−

2
→ K0

S
π−) = (3.2+2.1

−1.1
) × 10−4 B(D0 → K∗−

2
π+) = (2.0+1.3

−0.7
) × 10−3

CLEO B(D0 → K∗−

2
π+)B(K∗−

2
→ K

0
π−) = (6.5+4.2

−2.2
) × 10−4 B(D0 → K∗−

2
π+) = (2.0+1.3

−0.7
) × 10−3

BaBar B(D0 → K∗+

2
K−)B(K∗+

2
→ K0π+) = (6.8 ± 4.2) × 10−4 B(D0 → K∗+

2
K−) = (2.0 ± 1.3) × 10−3

BaBar B(D0 → K
∗0

2 K0)B(K
∗0

2 → K−π+) = (6.6 ± 2.7) × 10−4 B(D0 → K
∗0

2 K0) = (2.0 ± 0.8) × 10−3

PDG06 B(D0 → a+

2
K−) < 2 × 10−3

PDG06 B(D+
s → f2π+)B(f2 → π+π−) = (1.2 ± 0.7) × 10−3 B(D+

s → f2π+) = (2.1 ± 1.3) × 10−3

E791 B(D+
s → f2π+)B(f2 → π+π−) = (2.0 ± 0.7) × 10−3 B(D+

s → f2π+) = (3.5 ± 1.2) × 10−3

FOCUS B(D+
s → f2π+)B(f2 → π+π−) = (1.0 ± 0.3) × 10−3 B(D+

s → f2π+) = (1.8 ± 0.5) × 10−3

FOCUS B(D+
s → f2K+)B(f2 → π+π−) = (2.0 ± 1.3) × 10−4 B(D+

s → f2K+) = (3.5 ± 2.3) × 10−4
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Table 8: Branching ratios for various D → TP decays. Experimental results are taken
from Table 7.

Decay Katoch etal .[51] Muñoz etal .[52]
Cheng[53]

Experiment
without FSIs with FSIs

D+ → f2(1270)π+ 7.97 × 10−6 2.9 × 10−5 2.2 × 10−4 (0.9 ± 0.1) × 10−3

D0 → f2(1270)π0 2.47 × 10−7

D0 → f2(1270)K
0

9.0 × 10−5 1.0 × 10−4 2.5 × 10−4 (4.5 ± 1.7) × 10−3

D+
s → f2(1270)π+ 3.6 × 10−4 6.6 × 10−5 2.1 × 10−3 (2.1 ± 0.5) × 10−3

→ f2(1270)K+ 5.2 × 10−6 4.9 × 10−5 (3.5 ± 2.3) × 10−4

D+ → f ′

2
(1525)π+ 7.18 × 10−9 1.4 × 10−6 3.7 × 10−6

D0 → f ′

2
(1525)π0 2.18 × 10−10

D0 → f ′

2
(1525)K

0
2.5 × 10−7 6.0 × 10−7

D+
s → f ′

2
(1525)π+ 1.3 × 10−2 1.6 × 10−4 1.5 × 10−4

→ f ′

2
(1525)K+ 4.9 × 10−6 7.5 × 10−6

D+ → a+

2
(1320)π0 9.05 × 10−7

D+ → a0
2
(1320)π+ 5.55 × 10−6

D+ → a+

2
(1320)K

0
1.1 × 10−4 1.3 × 10−6 1.3 × 10−6 < 3 × 10−3

D0 → a−

2
(1320)π+ 4.21 × 10−6 5.7 × 10−6 6.1 × 10−6 (7.0 ± 4.3) × 10−4

→ a0
2
(1320)π0 1.72 × 10−7

→ a+

2
(1320)K− 0 0 8.9 × 10−8 < 2 × 10−3

→ a0
2
(1320)K

0
1.7 × 10−5

D+ → K
∗0

2 (1430)π+ 9.9 × 10−3 2.6 × 10−4 2.6 × 10−4 (1.4 ± 0.6) × 10−3

D0 → K∗−

2
(1430)π+ 4.1 × 10−3 1.0 × 10−4 1.1 × 10−4 (2.0+1.3

−0.7) × 10−3

→ K
∗0

2 (1430)π0 0 0 1.3 × 10−5 < 3.4 × 10−3

→ K∗+

2
(1430)K− 0 1.3 × 10−6 (2.0 ± 1.3) × 10−3

→ K
∗0

2 (1430)K0 0 ∼ 10−8 (2.0 ± 0.8) × 10−3

D+
s → K

∗0

2 (1430)K+ 0

→ K
∗+

2 (1430)K
0

4.2 × 10−5
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E∗
2 and E∗

3 are the energies of final state mesons M2 and M3 respectively in the rest frame
of M1 and M2

E∗

2 =
m2

12 − m2
1 + m2

2

2m12

, (57)

E∗

3 =
m2

D − m2
12 − m2

2

2m12
. (58)

The scatter plot in m2
12 versus M2

23 is called a Dalitz Plot. For a detailed introduction
of Dalitz technique, please refer to Chapter 4 and Ref. [54]. The amplitude |A|2 of a
nonresonant decay is parameterized as constant without variation in magnitude or phase
across the Dalitz plot. Therefore, the allowed region of the plot is uniformly populated
with events. A nonuniformity with bands near the mass of the resonance in the plot
will reflect the appearance of resonant contribution. One can find a review of Dalitz plot
application on charm decays in [55].

4.2 Resonant Three-Body Decays

Charmed meson three-body decays proceed dominantly via quasi-two-body decays con-
taining an intermediate resonance state which then decays to two particles. The analysis
of these resonant decays using the Dalitz plot technique enables one to study the dynam-
ical properties of various resonances. In theoretical studies, resonant decays are often
divided into product of two processes: B(D → RM3) × B(R → M1M2), just as we have
shown in Section 3. Therefore what we confront with is in fact charmed meson two-body
decays.

4.3 Nonresonant Three-Body Decays

The nonresonant contribution is usually a small fraction of the total 3-body decay rate.
Experimentally, they are hard to be measured as the interference between nonresonant
and quasi-two-body amplitudes makes it difficult to disentangle these two distinct contri-
butions and extract the nonresonant one. Theoretically, the matrix element of D decaying
to three mesons in general has two types of formalism in the factorization approximation,
relying on how to distribute three final mesons into two ”clusters”.

For one type with a ”cluster” where D transits to a light meson, one can find

〈M1M2M3|JiµJ
′µ
i |D〉 ∼ 〈M1M2|Jiµ|0〉〈M3|J ′µ

i |D〉. (59)

It is obvious that its contribution is negligibly small since matrix element 〈M1M2|Jiµ|0〉
which also appears in the factorizable contributions of weak annihilation in two-body
decays vanishes in the chiral limit.

For the other type with a ”cluster” where D transits to two light mesons, the factorized
formula reads

〈M1M2M3|JiµJ
′µ
i |D〉 ∼ 〈M1|Jiµ|0〉〈M2M3|J ′µ

i |D〉. (60)
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Here a new matrix element 〈M2M3|J ′µ
i |D〉 is introduced. It has the general expression

[56]

〈M2(p2
)M3(p3

)|J ′µ
i |D(p

D
)〉 = ir(p

D
− p

2
− p

3
)µ + iω+(p

2
+ p

3
)µ + iω−(p

3
− p

2
)µ

+hεµναβp
Dν(p2

+ p
3
)α(p

3
− p

2
)β , (61)

where r, ω± and h are form factors. In general they receive two distinct contributions: one
from the point-like weak transition and the other from the pole diagrams which involve
four-point strong vertices. Models based on chiral symmetry and heavy quark effective
theory have been developed to make some estimates on them [56, 57, 58].

Charmed meson to three pseudoscalar nonresonant decays have been studied in the
approach of effective SU(4)L × SU(4)R chiral Lagrangian [59, 60, 61, 62, 63], in which
the predictions of the branching ratios were in general too small when compared with
experiment. With the advent of heavy meson chiral perturbation theory (HMChPT)
[64, 65, 66], the nonresonant D decays can be studied reliably at least in the kinematical
region where the final pseudoscalar mesons are soft [67, 68, 69]. Some theoretical results
are collected in Table 9.

4.4 Beyond Three-Body Decays

Some multi-body charm meson decays, even up to seven-body, have been measured in
experiment [9]. Yet our available theoretical tools lose much of their power when applied
to genuine multi-body transitions. The kinematics structure and strong dynamics will be
more and more complicated and ultimately out of control with the number of final state
particles increase.
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