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Kinematic/Vertex fitting is a mathematical procedure in which one uses the physical law
governing a particle interaction or decay to improve the measurements describing the process.
For example, considering the decay chains, ψ(3770) → D+D−, then D+ → K−π+π+. The
fact that the three particles coming from a D+ decay must come from a common space point
can be used to improve the momentum vector of daughter particles, the total energy of D+

must equal to the beam energy, thus improving the mass and momentum resolution of D+.
These resolution improvements translate to larger signal to background ratio. Kinematic
fitting is used in all high energy physics experiments today.

1 Kinematic fitting

1.1 General algorithm for kinematic fitting

The fitting technique is straightforward and is based on the well-known Lagrange multiplier
method[1]. It is assumed that the constraint equations can be linearized and summarized in
two matrices, D and d. Let α represent the parameters for a set of n tracks. It has the form
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of a column vector

α =




α1

α2
...

αn


 (1.1)

Initially the track parameters have the unconstrained values α0, obtained from the re-
construction. The r functions describing the constraints can be written generally as

H(α) ≡ 0, where H =
(
H1 H2 · · · Hr

)
(1.2)

Expanding (1.2) around a convenient point αA yields the linearized equations

0 =
∂H(αA)

∂α
(α− αA) + H(αA) = Dδα + d (1.3)

where δα = α− αA. Thus we see that

D =




∂H1

∂α1

∂H1

∂α2

· · · ∂H1

∂αn

∂H2

∂α1

∂H2

∂α2

· · · ∂H2

∂αn
...

...
. . .

...
∂Hr

∂α1

∂Hr

∂α2

· · · ∂Hr

∂αn




d =




H1(αA)
H2(αA)

...
Hr(αA)


 (1.4)

or Dij =
∂Hi

∂αj

and di = Hi(αA). The constraints are incorporated using the method of

Lagrange multipliers in which the χ2 is written as a sum of two term

χ2 = (α− α0)
T V −1

α0
(α− α0) + 2λT (Dδα + d) (1.5)

where λ is a vector of r unknowns, the Lagrange multipliers. Minimizing the χ2 with respect
to α and λ yields two vector equations which can be solved for parameters α and their
covariance matrix:

V −1
α0

(α− α0) + DT λ = 0
Dδα + d = 0

(1.6)

The solution cab be written

α = α0 − Vα0D
T λ

λ = VD(Dδα0 + d)

VD =
(
DVα0D

T
)−1

Vα = Vα0 − Vα0D
T VDDVα0

χ2 = λT V −1
D λ = λT (Dδα0 + d)

(1.7)

where δα0 = α0 − αA. In the above solution, only a single matrix must be inverted the
r × r matrix VD. The changes to α caused by the constraints are propagated by matrix
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multiplication. The χ2 is a sum of r distinct terms, one per constraint. The contribution of
each constraints is correlated with all others through VD.

It is useful to compute how far the parameters have to move to satisfy a particular
constraint j. The initial “distance from satisfaction” can be characterized by the quantity
(Dδα0 + d)j and the number of standard deviations away from the satisfying the constraint
is easily calculated to be

σj =
Djiδα0i + dj√

(V −
D )jj

(1.8)

This information can be used to provide criteria for rejecting background in addition to the
overall χ2.

1.2 Track representation

For kinematic fitting it is important to choose a track representation which uses physically
meaningful quantities and is complete. Here, 7-parameter W format, defined as αW =
(px, py, pz, E, x, y, z) a 4-momentum and a point where the 4-momentum is evaluated, is
adopted in kinematic fitting software package. It’s easy to transfer the parameters and
their covariance to W representation for neutral tracks. The W format is much simpler to
transport particles in a magnetic field, and will be helpful to vertex fitting. It’s noted that
the W formats also have enough information to represent the general decays of particles.

1.3 Kinematic Constraints

In this section, we’ll compute the explicit form of the D and d matrices for constraints
commonly encountered in high energy physics. If multiple constraints are desired then one
just extends the matrices by adding rows to them, one row per constraint. This allow many
constraints to be used simultaneously in the fit.

1) Invariant mass constraint

H = E2 − p2
x − p2

y − p2
z −m2

c = 0
D =

(−2px −2py −2pz 2E 0 0 0
)

d = E2 − p2
x − p2

y − p2
z −m2

c

(1.9)

2) Total energy constraint

H = E − Ec = 0
D =

(
0 0 0 1 0 0 0

)
d = E − Ec

(1.10)

3) Total momentum constraint

H =
√

p2
x + p2

y + p2
z − pc = 0

D =
(
px/p py/p pz/p 0 0 0 0

)
d =

√
p2

x + p2
y + p2

z − pc

(1.11)
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4) Total 3-vector constraint

H =




px − pcx

py − pcy

pz − pcz


 = 0

D =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0




d =




px − pcx

py − pcy

pz − pcz




(1.12)

5) Total 4-vector constraint

H =




px − pcx

py − pcy

pz − pcz

E − Ec


 = 0

D =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




d =




px − pcx

py − pcy

pz − pcz

E − Ec




(1.13)

6) Equal mass constraint

H = (E2
1 − p2

1x − p2
1y − p2

1z)− (E2
2 − p2

2x − p2
2y − p2

2z)
D1 =

(−2p1x −2p1y −2p1z 2E1 0 0 0
)

D2 =
(
2p2x 2p2y 2p2z 2E2 0 0 0

)
d = (E2

1 − p2
1x − p2

1y − p2
1z)− (E2

2 − p2
2x − p2

2y − p2
2z)

(1.14)

Once these matrices are known the tracks can be kinematically fit using the procedure
described in the previous section.

2 Vertex Fitting

Consider a set of n tracks forced to pass through a common vertex x = (x, y, z). The
covariance matrix of the vertex may be known in advance, the overall χ2 can be written as
a general form

χ2 = (α− α0)
T V −1

α0
(α− α0) + (x− x0)

T V −1
x0 (x− x0) + 2λT (Dδα + Eδx + d) (2.1)

where the terms represent, respectively, the contribution from tracks, vertex and the con-
straints, x0 and Vx0 represent the initial vertex position and its covariance matrix, δα =

α− αA and δx = x− xA, Eij =
∂Hi

∂xj

.
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2.1 Formulas for Vertex Fitting

For each track i there are two constraint equations, corresponding to the bend and non-bend
plane. The momentum and position components of a charged particle in a magnetic field
can be written as:

p̂ = −(p̂0 × ĥ)× ĥ cos ρs− p̂0 × ĥ sin ρs + (p̂0 · ĥ)ĥ

x̂ = x̂0 − (p̂0 × ĥ)× ĥ

a
sin ρs− p̂0 × ĥ

a
(1− cos ρs) +

(p̂0 · ĥ)s

p
ĥ

p̂ = p̂0 − a(x̂− x̂0)× ĥ

(2.2)

where p̂ = (px, py, pz, x̂ = (x, y, z) and ĥ is a unit vector pointing along the direction of
the magnetic field, a = −0.00299792458Bq, B is the magnetic field strength in Tesla, q is
the charge, ρ = a/p, s is the arc length measured from point x̂0 to x̂.

From (2.2), we can get the vertex constraints

0 = (p̂i ×∆x̂i) · ĥ− ai

2

(
∆x̂i

2 − (∆x̂i · ĥ)2
)

0 = ∆x̂i · ĥ− p̂i · ĥ
ai

sin−1


ai

(
p̂i ·∆x̂i − (p̂i · ĥ)(∆x̂i · ĥ)

)

∣∣∣p̂i × ĥ
∣∣∣
2




(2.3)

where ∆x̂i = x̂x − x̂i. The E and D matrices have the simple form

E =




E1

E2
...

En


 D =




D1

D2

. . .

Dn


 (2.4)

where Ei is a 2× 3 matrix and Di is a 2× 7 matrix. E and D have this particular block
diagonal form because the vertex constraints for each track only involve the parameters for
that track. It can greatly simplify the solution of vertex fitting, the inversion of 2n × 2n
matrix VD can be factored into n 2× 2 inversion.

In a solenoidal field, the matrices Di, Ei and di for each track are given by

Di =




∆yi −∆xi 0 0 pyi + ai∆xi −pxi + ai∆yi 0

−pziSiRxi −pziSiRyi −sin−1 Ji

ai

0 pxipziSi pyipziSi −1




Ei =

(−(pyi + ai∆xi) pxi − ai∆yi 0
−pxipziSi −pyipziSi 1

)

di =


∆yipxi −∆xipyi − ai

2
(∆x2

i + ∆y2
i )

∆zi − pzi

ai

sin−1 Ji




(2.5)
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where the auxiliary quantities J , Rx, Ry and S are defined as follows:

J = a
∆xpx + ∆ypy

p2
T

Rx(y) = ∆x(y)− 2px(y)
∆xpx + ∆ypy

p2
T

S =
1

p2
T

√
1− J2

(2.6)

The solution of (2.1) is straightforward, but algebraically tedious:

δα = δα0 − Vα0D
T λ

δx = δx0 − Vx0E
T λ = VxV

−1
x0 δx0 − VxE

T λ0

λ = VD̃(Dδα0 + Eδx0 + d) = λ0 + VDEδx
λ0 = VD(Dδα0 + d)

VD̃ = VD − VDEVxE
T VD

VDi = (DiV0iD
T
i )−1

(2.7)

where δα = α− αA and δx = x− xA. The covariance matrices are

Vx = (V −1
x0

+ ET VDE)−1

Vα = Vα0 − Vα0D
T VDDVα0 + Vα0D

T VDEVxE
T VDDVα0

cov(α, x) = −Vα0D
T VDEVx

(2.8)

The vertex err matrix Vx is the weighted average of its initial covariance matrix and the
errors determined from the tracks. The track error matrix Vα has an initial piece that is
decreased by the constraints applied per track and is increased by the wiggle of the vertex.
cov(α, x) is the correlation between tracks introduced by the vertex constraint. The χ2 is
given by

χ2 = λT (Dδα0 + Eδx0 + d) (2.9)

2.2 Vertex constraint to a fixed position

In this case, the vertex position is fixed and the solution can be obtained by setting δx0 = 0,
E=0 and Vx0 = 0 in (2.7),(2.8) and (2.9). The solution factors into n pieces, one per track.

2.3 Vertex constraints to an unknown position

In this case the vertex position x must be determined from the constraints. The simplest
approach is to assign large value to Vx0 , the initial vertex convariance matrix, and apply the
method from (2.7),(2.8) and (2.9).

2.4 Swimming the Track Parameters to Vertex Position

After the vertex fitting, track parameters and their covariance matrix should be updated to
the vertex position. The track parameters can be written in matrix form, following (2.2)

αV =

(
pV

xV

)
=

(
Aα + Bx

x

)
(2.10)
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Figure 1: K0
S travels a certain distance(“the flight distance”) before decaying into its daugh-

ters. These daughters are subsequently measured by the tracking system.

where

A =




1 0 0 0 0 az −ay

0 1 0 0 −az 0 ax

0 0 1 0 ay −ax 0
0 0 0 1 0 0 0


 B =




0 −az ay

az 0 −ax

−ay ax 0
0 0 0


 (2.11)

The covariance matrix is much complicated, it can be written as

VαV
=

(
VpV

cov(pV , xV )
cov(xV , pV ) VxV

)

VpV
= AVαA

T + Acov(α, x)BT + Bcov(x, α)AT + BVxB
T

cov(pV , xV ) = Acov(α, x) + BVx

VxV
= Vx

(2.12)

3 The Decay Vertex and Lifetime Determination

To introduce the subject of lifetime determination, consider Figure 1, a K0
S decays to π+π−

at a secondary vertex after being produced in the beam interaction region. An accurate
determination of the lifetime requires that both the beginning and endpoint of the K0

S flight
vector be determined accurately. The endpoint is determined by vertex fitting, and its
measurement accuracy is controlled purely by the tracking error of the daughter particles.
The beginning point is determined by the beam spot size augmented perhaps, as shown in
Figure 1, by other tracks produced in IP, or by the average of preliminary vertex for lot of
events.

The motion of a neutral track before decay is a simple linear equation. For a charged
track, it travels within a helix orbit (2.2) in a solenoidal magnetic field. To eliminate the
flight distance (s) measured from the point (xp, yp, zp) to (xd, yd, zd), by the proper lifetime

7



0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52

E
v
e
n
ts

 /
 (

 0
.3

M
e
V

)

0

50

100

150

200

250

Mass of Ks (GeV)

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52
0

50

100

150

200

250

1.106 1.108 1.11 1.112 1.114 1.116 1.118 1.12

5

10

15

20

25

30

35

Mass of Λ (GeV)
1.106 1.108 1.11 1.112 1.114 1.116 1.118 1.12

E
v
e
n
ts

 /
 (

 0
.1

2
M

e
V

) 

0

5

10

15

20

25

30

35

Figure 2: The mass distribution of reconstructed K0
S and Λ.

cτ using s = βct = γβcτ = (p/m)cτ , yielding the new equations




xp

yp

zp


 =




xd − px

m
sin

(acτ

m

)
− py

a

(
1− cos

(acτ

m

))

yd − py

m
sin

(acτ

m

)
+

px

a

(
1− cos

(acτ

m

))

zd − pz

m
cτ







xp

yp

zp


 =




xd − px

m
cτ

yd − py

m
cτ

zd − pz

m
cτ




(3.1)

The lifetime cτ is determined by recognizing (3.1) represent constraint conditions. We
can apply

χ2 = (α− α0)
T V −1

α0
(α− α0) + 2λT (Dδα + Eδcτ + d) (3.2)

to solve for cτ and its error, while at the same time improving the track parameters and the
start point. The vector α = (px, py, pz, E, xd, yd, zd, xp, yp, zp)

T contains 10 variables, the 7
track parameters at the decay point and the 3 for production point.

The solution for cτ and its covariance matrix is straightforward

δcτ = −VcτE
T λ0

Vcτ = (ET VDE)−1

λ0 = VD(Dδα0 + d)
VD = (DVα0D

T )−1

(3.3)

The updated α, covariance matrix Vα and the correlation with cτ :

α = α0 − Vα0D
T λ

λ = λ0 + VDEδcτ
Vα = Vα0 − Vα0D

T VDDVα0 + Vα0D
T VDEVcτE

T VDDVα0

cov(α, cτ) = −Vα0D
T VDEVcτ

χ2 = λT (Dδα0 + d)

(3.4)

Figure 2 shows the mass distribution of K0
S and Λ after the secondary vertex reconstruc-

tion and selection. The mass resolution is about 3MeV for KS, and about 1.2MeV for Λ,
respectively.
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