Chapter 4

Analysis tools

4.1 Dalitz-plot Analysis Formalism!

Originally the primary application of Dalitz-plot analyses was to determine the spin and
parity of light mesons. Recently Dalitz-plot analyses have emerged as a powerful tool in
the study of D and B mesons.

Charm meson decay dynamics have been studied extensively over the last decade.
Recent studies of multi-body decays of charm mesons probe a variety of physics includ-
ing doubly-Cabibbo suppressed decays|1][2][3], searches for C'P violation[2][4][5][6][7], T
violation[8], D°~D° mixing[9][10], the properties of established light mesons[11][12][13][14],
the properties of 77[1][13][15], K7[16][17], and K K [18] S-wave states, and the dynamics
of four-body final states[19][20].

Recently B meson decay dynamics have been studied. Multi-body decays of B mesons
also probe a variety of physics including, charmless B-decays[21] [?][23][24][25], measure-
ments of the Cabibbo-Kobayashi-Maskawa (CKM) angle /3 [26][27][28][29][30], searches
for direct C'P violation[23] [24][31], charm spectroscopy[32][33], the properties of estab-
lished light mesons [21][24][25], the properties of K K[21][25] and K7[21][23][24] S-wave,
and the three-body production of baryons|?][34]. Time-dependent Dalitz-plot (TD) analy-
ses have been used to determine the CKM angle o/ with B — 77~ 7°[35] and to resolve
the two-fold ambiguity in the CKM angle 3/¢; with B — D% D — K2nt7~[36][37].
A TD analysis of B® — D**K%7¥[38] is sensitive 7/¢s;. Future studies could improve
sensitivity to new physics in TD analyses of b — s penguin decays|25].

Additionally, partial wave analyses have been used to study the dynamics of charmo-
nium decays to hadrons, following the formalism presented in Refs.[39][40], in radiative
decays|41][42][43][44] and in decays to all hadronic final states[45][46][47][48]. Multi-body
decays of charmonium to all hadronic final states can be analyzed with the Dalitz-plot
analysis technique. Studies of the 77, K7 and K K S-wave in charmonium decays probe
most of the phase space accessible in B decays. Thus Dalitz-plot analyses of charmonia
could lead to reduced systematic errors in many B analyses.

Weak nonleptonic decays of B and charm mesons are expected to proceed dominantly
through resonant two-body decays in several theoretical models[49]; see Ref.[50] for a
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10 4. Analysis tools

review of resonance phenomenology. These amplitudes are typically calculated with the
Dalitz plot analysis technique[51], which uses the mininum number of independent ob-
servable quantities. For three-body decay of a spin-0 particle to all pseudo-scalar final
states, D, B — abc, the decay rate[52] is

1 252 5 2

I'= WT\/;‘ ‘M' dmabdmbc, (41)
where m;; is the invariant mass of ¢ — j and the coefficient of the amplitude includes all
kinematic factors. The scatter plot in m2, versus m2, is called a Dalitz plot. If | M|
is constant the allowed region of the plot will be populated uniformly with events. Any
variation in |M|* over the Dalitz plot is due to dynamical rather than kinematical effects.
It is straightforward to extend the formalism beyond three-body final states. For N-body
final states, phase space has dimension 3N — 7. Other cases of interest include one vector
particle or a fermion/anti-femion pair (e.g. B — D*nw, B — A.pm, B — K/{£) in the
final state. For the former case phase space has dimension 3/N — 5 and for the latter two
3N — 4.

4.2 Formalism?

The amplitude of the process, R — rc,” — ab where R is a D, B, or gq meson and a,b,c
are pseudo-scalars, is given by

M (J, L, 1, mgy, mipe) = Yoy (ab|ry) Tr.(map) {cra| Ry) (4.2)
= Z(J, L, laﬁa @BE(W])BE(M)Tr(mab),

where the sum is over the helicity states A of the intermediate resonance particle r, a
and b are the daughter particles of the resonance r, ¢ is the spectator particle, J is
the total angular momentum of R, L is the orbital angular momentum between r and
¢, | is the orbital angular momentum between a and b equivalent to the spin of r, p
and ¢ are the momentum of ¢ and a, respectively, in the r rest frame, Z describes the
angular distribution of final state particles, B and B? are the barrier factors for the
production of rc and ab, respectively, with angular momentum L, and 7, is the dynamical
function describing the resonance r. The amplitude for modeling the Dalitz plot is a
phenomenological object. Differences in the parametrizations of Z, By, and T, as well as
the set of resonances r, complicate the comparison of results from different experiments.

Usually the resonances are modeled with a Breit-Wigner although some more recent
analyses have used the K-matrix formalism[53][54][55] with the P-vector approximation[56]
to describe the 7w S-wave.

The nonresonant (NR) contribution D — abc is parameterized as constant (S-wave)
with no variation in magnitude or phase across the Dalitz plot. The available phase
space is much greater for B decay and the nonresonant contribution to B — abc requires
a more sophisticated parametrization. Theoretical models of the NR amplitude[57][58]
[59][60] do not reproduce the distibutions observed in the data. Experimentally, several
parametrizations have been used[21][25].
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4.2 Formalism 11

4.2.1 Barrier Factor B

The maximum angular momentum L in a strong decay is limited by the linear momentum
g. Decay particles moving slowly with an impact parameter (meson radius) d of order
1 fm have difficulty generating sufficient angular momentum to conserve the spin of the
resonance. The Blatt-Weisskopf[61][62] functions By, given in ??, weight the reaction
amplitudes to account for this spin-dependent effect. These functions are normalized
to give By, = 1 for z = (|¢]d)?> = 1. Another common formulation B, also in ?7?, is
normalized to give B} = 1 for z = 2q = (|qy| d)? where qq is the value of ¢ when mg, = m,.

0 1 1

1 2z 1+20
1+z 142

2 1322 (20—3)24920
(2-3)249z (2-3)2492

where z = (|¢]d)? and 2o = (|@| d)?

Table 4.1: Blatt-Weisskopf barrier factors.

4.2.2 Angular Distributions

The tensor or Zemach formalism[63][64] and the helicity formalism[65][64] yield identical
descriptions of the angular distributions for the decay process R — rc,r — ab for reactions
where a, b and c are spin-0 and the initial state is unpolarized. In this scenario, the angular
distributions for J = 0,1,2 are given in 4.2. For polarized initial states, the helicity
formalism|65] is used to determine the distinct angular distribution for each helicity state
|A|. The angular distributions for J = 1,2 for a polarized initial are given in 4.3. The
sign of the helicity cannot be determined from the Dalitz plot alone when a, b and ¢ are
spin-0. For final state particles with non-zero spin (e.g. radiative charmonium decays),
the helicity formalism is required.

For the decays of pseudoscalars to three pseudoscalars the formalism simplifies con-
siderably as the angular distribution Z depends only on the spin [ of resonance r. Since
J =0 and L =1 only the first three rows of 4.2 are required.

4.2.3 Dynamical Function Ty

The dynamical function 7, is derived from the S-matrix formalism. In general, the am-
plitude that a final state f couples to an initial state ¢ Sy; = (f|S]i), where the scattering
operator S is unitary and satisfies SSt = S1S = I. The transition operator 7" is defined
by separating the probability that f = ¢ yielding,

S=1I+2T=1+2i{p}'*T{p}'"*, (4.3)
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J—=1l+L Angular Distribution
0—0+0 uniform

0—1+1 (1+¢?) cos? 0

0—2+42 (2 +2)2(cos? 0—1/3)*
1—-0+1 uniform

1—140 1+(¢?cos® 0

1—-1+1 sin? 6

1—1+2 1+(3+4¢?) cos® 0

1—2+1 (14+¢*)[1+3 cos? +9(*(cos? §—1/3)?]
1—2+42 (14+¢?) cos? fsin” @

2—0+2 uniform

2—1+1 3+(1+4¢?) cos? 0

2—1+2 sin” 6

25240 1+§;+C2 cos? O+(*(cos?0—1/3)?
2—2+1 1+<9—2+(C3—2—1) cos® 0—(?(cos? —1/3)2

2—2+2 1+ % + (43—2 —1) cos? 0+ (16<4+21<2w;(cos2 01/5)"

Table 4.2: Angular distributions for each J, L, [ for unpolarized initial states where 6 is the
angle between particles a and c in the rest frame of resonance r, /1 + (? is a relativistic
correction with (2 = E?/m?, — 1, and E, = (m% + m2, — m?)/2mg.

J—=1l+L Angular Distribution

1—1+0 Fyy? cos? § + F sin? 0

1—-1+1 Fysin?6

1—1+42 Fy(27/3)% cos? 0 + Fy(1/9) sin® 0

1—2+1 2Fyy*(cos® 6 —1/3)?
+F172[2/9+2/3 cos® —2(cos? § — 1/3)?]

15242 F1y2 cos? sin” 0

2—1+1 Fo(2+?%/3) cos? 62 + F1(1/2) sin® 0

2—1+2 Fysin?6

23240  Fy(47"/3 +472/3 + 1/3)(cos> H—1/3)2
+F17%[4/9 + 4/3 cos® § — 4(cos? —1/3)?]
+F5[8/9 — 4/3 cos? 0 + (cos? 0—1/3)?]
2—2+1 Fiv?[1/9+41/3 cos® § — (cos® —1/3)?]
+F5[8/9 — 4/3 cos? 0 + (cos? 0—1/3)?]
2—2+2 3Fy(472/9—1/9)*(cos? 0—1/3)?
+F17*[1/944/3— (cos? 0—1/3)%]/9
+F5[8/9—4/3 cos? 0 + (cos® §—1/3)]/9

Table 4.3: Angular distributions for J # 0, L # 0,1 for polarized initial states where cos 6
is the angle between particles a and ¢ in the rest frame of resonance r, v = E,/mg, and
E, = (m% + m2, — m?)/2mpg. F\ denotes the fraction of the initial state in helicity state
A. For unpolarized initial states setting F=1 recovers the angular distributions obtained
from the Zemach formalism shown in 4.2.
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A

where I is the identity operator, T is Lorentz invariant transition operator, p is the
diagonal phase space matrix where p; = 2¢;/m and ¢; is the momentum of a in the r
rest frame for decay channel i. In the single channel S-wave scenario S = e%*9 satisfies
unitarity and implies
T = %ei‘s sin 4. (4.4)
There are three common formulations of the dynamical function. The Breit-Wigner
formalism is the simplest formulation - the first term in a Taylor expansion about a T
matrix pole. The K-matrix formalism[53] is more general (allowing more than one T
matrix pole and coupled channels while preserving unitarity). The Flatté distribution[66]
is used to parameterize resonances near threshold and is equivalent to a one-pole, two-
channel K-matrix.

4.2.4 Breit-Wigner Formulation

The common formulation of a Breit-Wigner resonance decaying to spin-0 particles a and
b is .

m% - mgb - Z.anl—\a,b(Q)

Tr(mab) = (45)

where the “mass dependent” width T is

r=r, (2)2“1 ( T ) Bi(4, %) (4.6)

qr Map

where B/ (g, qo) is the Blatt-Weisskopf barrier factor from 4.1. A Breit-Wigner parametriza-
tion best describes isolated, non-overlapping resonances far from the threshold of addi-
tional decay channels. For the p and p(1450) a more complex parametrization as suggested
by Gounaris-Sakarai[67] is often used [23][28][30][35].

Unitarity can be violated when the dynamical function is parameterized as the sum
of two or more overlapping Breit-Wigners. The proximity of a threshold to the resonance
shape distorts the line shape from a simple Breit-Wigner. This scenario is described by
the Flatté formula and is discussed below.

4.2.5 K-matrix Formalism
The T matrix can be described as
T=(I—-iKp) 'K, (4.7)

where K is the Lorentz invariant K-matrix describing the scattering process and p is the
phase space factor.
Resonances appear as a sum of poles in the K-matrix

s \/marai(m)maraj (m)
R T

The K-matrix is real by construction thus the associated T-matrix respects unitarity.

(4.8)
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For the special case of a single channel, single pole we obtain

i = ol (4.9)
and
T=K(1-iK)"= mol'(m) (4.10)

m3 — m? — imol'(m)
which is the relativistic Breit-Wigner formula. For the special case of a single channel,
two poles we have

_ mal'a(m) + mgl's(m)

m2 —m?2 m%—m2

(4.11)

and in the limit that m, and mg are far apart relative to the widths we can approximate
the T' matrix as the sum of two Breit-Wigners, T(K, + K3) ~ T(K,) + T (Kp),

mal'o(m) mgl's(m)
m2 —m? —imaLo(m)  mj —m? —imglg(m)’

T = (4.12)

In the case of two nearby resonances 4.12 is not valid and exceeds unity (and hence T
violates unitarity).

This formulation, which applies to S-channel production in two-body scattering ab —
cd, can be generalized to describe the production of resonances in processes, such as the
decay of charm mesons. The key assumption here is that the two-body system described
by the K-matrix does not interact with the rest of the final state[56]. The quality of this
assumption varies with the production process and is appropriate for scattering experi-
ments like 7~ p — 7%7%n, radiative decays such as ¢, J/¢» — ymm and semileptonic decays
such as D — Knlv. This assumption may be of limited validity for production processes
such as pp — @wnm or D — wwm. In these scenarios the two-body Lorentz invariant
amplitude, F, is given as

F= (I - ikp);' By = (TR ), (4.13)

where P is the production vector which parameterizes the resonance production in the
open channels.
For the 7w S-wave, a common formulation of the K-matrix[55][13][30] is

(@) () 2
i 1—s5°¢ s—sa/2m
Kij(s):{zg I 9]y foe== 50 } x 1 A/2my (4.14)

~ m2—s Y s—si s—540)(1—s40)

The factor gzga) is the real coupling constant of the K-matrix pole m, to meson channel

i; the parameters f7° and s§° describe a smooth part of the K-matrix elements; the

multiplicative factor ~2=24/2 me

(a0 (s agy SUPPTesses a false kinematical singularity near the 7w

threshold - the Adler zero; and the number 1 has units GeV?2.
The production vector, with ¢ = 1 denoting 77, is

ﬁag'a) rl sh S—S4 2m72r
Pj(8)={2 L — % / : (4.15)
0

(s—540)(1—540)
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where the free parameters of the Dalitz plot fit are the complex production couplings
fBa, and the production vector background parameters f{; and s . All other parameters
are fixed by scattering experiments. Ref. [54] describes the 77 scattering data with a
4 pole, 2 channel (77, KK) model while Ref. [55] describes the scattering data with 5
pole, 5 channel (77, KK, nn, n'n' and 47) model. The former has been implemented by
CLEOI6] and the latter by FOCUS|[13] and BaBar[30]. In both cases only the 77 channel
was analyzed. A more complete coupled channel analysis would simultaneously fit all
final states accessible by rescattering.

4.2.6 Flatté Formalism

The scenario where another channel opens close to the resonance position can be described
by the Flatté formulation

1

T Map) = -
() m2 —m2, —i(pLg7 + p2g3)

. 97+ g5 =m,T,. (4.16)

This situation occurs in the w7 S-wave where the f3(980) is near the KK threshold and in
the 77 channel where the a((980) also lies near K K threshold. For the ay(980) resonance
the relevant coupling constants are g1 = g, and ¢g» = gxx and the phase space terms are
P1 = pry and py = pxx where

Db = \/(1 - (M)Z) (1 + (wy) (4.17)

Map Map

For the f,(980) the relevant coupling constants are g; = g, and g, = gk and the phase
space terms are p; = pp, and ps = pgg. The charged and neutral K channels are usually
assumed to have the same coupling constant but separate phase space factors due to
Mg+ F# Mo resulting in

et (B o).

4.2.7 Branching Ratios from Dalitz Fits

The fit to the Dalitz plot distribution using either the Breit-Wigner or the K-matrix
formalism factorizes into a resonant contribution to the amplitude M, and a complex
coefficient, a;e", where a; and §; are real. The definition of a rate of a single process,
given a set of amplitudes a; and phases J; is the square of the relevant matrix element
(see 4.1). In this spirit, the fit fraction is usually defined as the integral over the Dalitz
plot (mg, vs my.) of a single amplitude squared divided by the integral over the Dalitz

plot of the square of the coherent sum of all amplitudes,

[ la;e®i M; ? dm2,dm?
J J ab be

1k areide My, > dm2,dm?,

Fit Fraction; = (4.19)
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where M, is defined by 4.2 and described in Ref.[4]. The sum of the fit fractions for all
components will in general not be unity due to interference.

It should be noted that, when the K-matrix description in 4.13 is used to describe a
wave (e.g. mm S-wave) then M; refers to the entire wave. In these circumstances, it may
not be straightforward to separate it into a sum of individual resonances unless these are
narrow and well separated, in which case 4.12 can be used.

Reconstruction Efficiency

The efficiency for reconstructing an event as a function of position on the Dalitz plot is
in general non-uniform.

Describe the efficiency parametrizations used at CLEO

Typically, a signal Monte Carlo sample generated with a uniform distribution in phase
space is used to determine the efficiency. The variation in efficiency across the Dalitz plot
varies with experiment and decay mode. Most recent analyses utilize a full GEANT[68]
detector simulation.

Finite detector resolution can usually be safely neglected as most resonances are com-
paratively broad. Notable exceptions where detector resolution effects must be modeled
are § - K™K, w — ntn~, and a9 — n7°. One approach is to convolve the resolution
function in the Dalitz-plot variables m?2,, m2, with the function that parameterizes the
resonant amplitudes. In high statistics data samples resolution effects near the phase
space boundary typically contribute to a poor goodness of fit. The momenta of a,b and ¢
can be recalculated with a R mass constraint. This forces the kinematical boundaries of
the Dalitz plot to be strictly respected. If the three-body mass is not constrained, then the
efficiency (and the parametrization of background) may also depend on the reconstructed
mass. In fits to multi-body decays of charmonia and bottomonia it is not appropriate to
constrain the mass due to the finite natural width of the parent.

Background Parametrization

The contribution of background to the charm and B samples varies by experiment and
final state. The background naturally falls into five categories: (i) purely combinatoric
background containing no resonances, (ii) combinatoric background containing interme-
diate resonances, such as a real K*~ or p, plus additional random particles, (iii) final
states containing identical particles as in D — K%7° background to D° — 7F7~ 7" and
B — D background to B — Krr, (iv) mistagged decays such as a real D’ or B’ incor-
rectly identified as D° or B® and (v) particle misidentification of the decay products such
as DY — n~ntrT or D} — K~ K*n" reconstructed as D™ — K-ntrn™.

The contribution from combinatoric background with intermediate resonances is dis-
tinct from the resonances in the signal because the former do not interfere with the latter
since they are not from true resonances. Additionally, processes such as ' — vxeo —
y(yJ/b) — yy(nm) and ' — 70T/, J/p — 7w, do not interfere since electromag-
netic and hadronic transitions proceed on different time scales. Similarly, D° — pr and
D® — K?27° do not interfere since strong and weak transitions proceed on different time
scales. The usual identification tag of the initial particle as a D° or a D° is the charge of
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the distinctive slow pion in the decay sequence D** — D1} or D*~ — Eoﬂ's_. Another
possibility is the identification or “tagging” of one of the D mesons from 1 (3770) — D°D°
as is done for B mesons from 7°(4S). The mistagged background is subtle and may be
mistakenly enumerated in the signal fraction determined by a D° mass fit. Mistagged
decays contain true D%s or B”s and so the resonances in the mistagged sample exhibit
interference on the Dalitz plot.
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