Design and Burn-in of TOF Preamplifier

Xian Ze FELab USTC April 27th, 2006

Outline

Endcap TOF Preamplifier:

Design

Test

➤ Barrel TOF Preamplifier Burn-in

Design of Endcap TOF Preamplifier

Reminder: barrel TOF preamplifier

Gain: ~10V/V

INL: ~0.5%

 T_{rise} : <2ns

DR: ~4V

PCB Layout of the Endcap TOF Preamplifier

The Test System

- Oscilloscope: Tektronics TDS7104, BW 1G, 10GSPS
- Probe: P6243, BW 1G, 1M Ohm, 1PF
- Source: Agilent33250A , rise time 5ns , pulse width 10ns
- Both input and output signals are sent into the scope.

Test of Endcap TOF Preamplifier

- The differential gain is about 10.6 V/V
- The dynamic range is larger than 4V

Gain difference among channels is less than 0.8%.

Detector-test is running.

Burn-in of Barrel TOF Preamplifier

• Produce the Preamplifier

Burn-in Procedure

Three test steps

- ✓ Pre test
- ✓ Continual power on under 50 for 7 days
- ✓ Re test

The Barrel Preamplifier

Detailed Test of the Preamplifier

Uniformity of the Performance

No.	001	002	003	004	005
Gain (V/V)	5.20	5.21	5.23	5.23	5.21

the differences of the gain are less than 0.6%

No.	001	002	003	004	005
INL	0.6%	0.4%	0.4%	0.4%	0.4%

Assembly of Burn-in System

± 5V DC power supply:
 192(16 × 12) channels for barrel amplifier
 adjustable: ± 5.1V~ ± 6.1

± 6V DC power supply:
 16(16 × 1) channels for endcap amplifier
 adjustable: ± 6.1V~ ± 7.1

- A burn-in period of 1 week is proposed, at an elevated ambient temperature of 50 $^{\circ}$ C, this means ~100 times faster than at the normal operating temperature of 25 $^{\circ}$ C .
- It is estimated that this process should yield about 32 tested, burned-in amplifier each week. The full production volume could be completed in ~15 weeks.

Amplifier Gain before and after Burn-in

Amplifier Gain before Burn-in

Amplifier Gain after Burn-in

• The fit value of gain (#004) before and after burn-in is 7.664 V/V and 7.660V/V respectively, the difference is negligible when considering the test system noise.

Amplifier T_{rise} before and after Burn-in

Amplifier T_{rise} before Burn-in

Amplifier T_{rise} after Burn-in

• The rise time of the preamplifier (#004) is less than 2 ns in both case.

Gain Compare

No.	#001	#005	#011	#014	#019	#023	#029	#030
B Gain (V/V)	7.62	7.68	7.69	7.69	7.68	7.66	7.74	7.69
A Gain (V/V)	7.63	7.61	7.68	7.66	7.62	7.67	7.71	7.65

- The largest difference : 0.07 V/V (0.9%)
- Considering the noise interference, the burn-in procedure influence the preamplifier gain very little.

Noise Introduced by Test Means

Noise with cable input

Noise with probe input

- The P-P noise with cable input is less than 2mV
- The P-P noise with probe input is about 15mV, which will introduce 0.75% error for a signal with amplitude 2V.

Conclusion

- The performance specifications, as gain, rise time, INL, dynamic range and so on, are all influenced little by the burn-in procedure.
- More detailed test will be done.

Thank You!