

王贻芳 高能物理研究所

高能物理中的探测器

半导体探测器 气体探测器 塑料闪烁探测器 晶体闪烁探测器 液体闪烁探测器

顶点室 径迹室 粒子鉴别 电磁量能器 强子量能器 Muon 室 中微子探测器

建造中的 ATLAS 探测器 (CERN/LHC)

CsI(Tl) calorimeter, 2.5 <u>%@1</u> GeV

- BESIII 气体漂移室
- RPC
- GEM
- 阴极条室与漂移管

•	设计指标:	单丝分辨率	130µm,	dE/dx	6 %
	CLEO:		~ 85µm,		5.7%
	Babar:		~110µm,		6.2%
	Belle:		~130µm,		5.7%
	BESIII		~120µm		6 %

• $R_{in} = 63mm; R_{out} = 810mm; length = 2400 mm$

- 7000 Signal wires: 25(3% Rhenium) μm gold-plated tungsten
- 22000 Field wires: 110 μm Al
- Gas: He + C_3H_8 (60/40)
- Momentum resolution@1GeV:

 $\frac{\sigma_{P_t}}{P_t} = 0.32\% \oplus 0.37\%$

Beam test at KEK

BESIII µ system : RPC

- 阻性板室(RPC):无丝气体探测器
- 造价低,适用于大面积应用
- 9 layer, 2000 m^{2,} 10000 channels
- Bakelite w/o lineseed oil
- Noise less than 0.1 Hz/cm²

•国际上RPC 可采用电木板 (L3, Babar, CMS, ...)或玻璃(Belle)

•Babar等实验发现寿命问题,与 RPC特殊制造工艺----表面淋油 有关;

•BESIII RPC采用了新的不淋油工 艺

RPC production in the clean room

Performance of RPCs

So far ~1000 RPCs fabricated, the average area for the endcap RPC is 1.3m², barrel RPC 1.4m². Maximum RPC is 1.2mx2.4m. The performance statistics of the tested 444 barrel RPCs:

0.4

10

0

0 1

0.2

Single's rate (Hz/cm²)

0.3

RPC surface seen by the atomic force microscope

RPC and mechanics completed

(m)RPC application in HEP

- Muon chamber/muon trigger (L3, CMS, Atlas, Phenix,...)
- Hadron calorimeter (ILC)
- TOF (Star, Alice...)
- Cosmic-ray exp. (羊八井,...)
- Neutrino exp. (大亚湾, Opera, 印度,...)

Possible RPC application for ILC

RPC as the active detector of the digital hadron calorimeter

RPC as the muon detector

GAS ELECTRON MULTIPLIER(GEM)

Thin metal-clad polymer foil with high density of holes

Gas gain ~ 100

Two layers: 10,000

 70 μm

 140 μm

TYPICAL GEM GEOMETRY:5 μm Copper on 50 μm Polymer70 μm holes at 140 mm pitch

A cheap, simple, large area γ /e detector

Can be used as tracker, gas chamber readout, image detector, ...

GEM detector as tracking devices

Tracking detector for COMPASS

Tracking detector for CMS

GEM as a photon detector

Reflective Csl photocathode:

R. Bouclier et al, IEEE Trans. Nucl. Science NS-44(1997)646

TRIPLE GEM WITH Csl PHOTOCATHODE

Single photon position accuracy: 50 µm

T. Meinschad, L. Ropelewski and F. Sauli, Nucl. Instr. And Meth. A535(2004)324

国内的研究状况

- 中国科技大学已完成模型室测试
- 清华大学与高能所合作,已完成模型室, 正在测试
- 微孔膜的国产化已取得重要进展

为欧洲核子研究中心(CERN)上的 CMS实验建造的µ子探测器: 阴极条室

高计数率([~]1KHz/cm²) 空间分辨率 50µm 时间响应 < 25µs 寿命 > 10年(累计0.1C/cm)

为CERN的ATLAS实验建造µ子探测器:MDT

- 阳极丝直径50µm;
- 端头确定丝位置,提供气体通路;

— 指标要求: 空间分辨 单管分辨 单管分辨 单管的组 室内组织	弹 弹 丝定位精度 它位精度	50μm 80 μm 10 μm r.m.s 20 μm r m s
主要工作参数:		20 µm mm.5
混合气体	Ar/CO2 (93/	(7)
气压	3 bar	
增益	2×10 ⁴	
工作电压	3080V	
最大漂移时间	~ 700ns	

◊ 恒温恒湿洁净室: *洁净度* 10000级 温度 (20±1) ℃ 湿度 (45±10)%
 ◊ MDT管组装平台

- ♦ MDT管测试:丝张力、漏气率、漏电流、丝定位
- ♦ MDT室组装平台: 组装精度 20µm

- CsI(Tl)
- BGO
- PbWO₄
- LSO

Summary of Crystals for HEP

Crystal	NaI(TI)	CsI(Tl)	CsI	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (^o C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.2	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm)	410	560	420	300	480	560	420	440
(at peak)			310	220		420		
Decay Time ^b (ns)	230	1300	35	630	300	50	40	60
			6	0.9		10		
Light Yield ^{b,c} (%)	100	45	5.6	21	13	0.1	75	30
			2.3	2.7		0.6		
d(LY)/dT ^b (%/ ^o C)	~0	0.3	-0.6	-2	-1.6	-1.9	-0.3	-0.1
				~0				
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV	TAPS (L*) (GEM)	L3 BELLE PANDA?	CMS ALICE PANDA? BTeV	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

Crystal Density: Radiation Length

1.5 X₀ Cubic

Full Size Samples *BaBar* CsI(TI): 16 X₀ L3 BGO: 22 X₀ CMS PWO(Y): 25 X₀

BESIII CsI(Tl) crystal calorimeter

- Barrel: 5280 crystals, Endcap: 960 crystals
- Crystal: (5.2x 5.2 6.4 x 6.4) x 28cm³
- Readout: 13000 Photodiodes, 1cm×2cm, BEL
- Energy range: 20MeV 2 GeV
- position resolution: 6 <u>mm@1GeV</u>
- Tiled angle: theta ~ 1-3°, phi ~ 1.5°

Crystal production

Producer	quantity
Saint-Gobain	3000
SIC	1992
Hamamatzu, Beijing	1320

Mechanical structure: no supporting walls for better resolution

Three independent calculations + experiments

L3 BGO calorimeter

All 12,000 crystals produced by SIC

CMS PWO crystal calorimeter

未来高能物理实验与医学成象的 理想晶体: LSO

- Fast:40 nsDense:7.4 g/cm³light yield:70% of Nal
- Costly: 15\$/cc ? Noisy: ~ 1MeV

Φ 80 x 120 Large size LSO (Ce:Lu₂SiO⁵) crystals are in production

闪烁探测器

- **BESIII TOF**
- Plastic scintillator
- liquid scintillator

Test beam at IHEP: for various types of scintillators, thickness, wrapping materials, ...

Barrel

Endcap

衰减长度: 2.83m 光产额: 40%菌晶体

KamLAND: the ultimate reactor neutrino oscillation experiment

- 1 kton liq. Scint. Detector in the Kamioka cavern
 ~1300 17" fast PMTs
 ~700 20" large area PMTs
 30% photocathode coverage
 H₂O Cerenkov veto counter
 Multi-hit deadtime-less electronics
 Am² consitivity 7:10-6 eV²
- Δm² sensitivity 7*10⁻⁶ eV²
 LMA-MSW solution
 within reach on the earth !

- PV scintillator: Gd(CH₃(CH₂)₃CH(C₂H₅)CO₂)₃
- •Attenuation length: 11m
- •Light yield: 55% antracene
- PV aging: 0.03%/day,
- •Chooz aging: 0.4%/day

Palo Verde

12 ton Gd loaded scintillating target

0.1% Gd-loading

国产液体闪烁体

- 掺钆液闪在中子/中微子探测中有重要应用
- 目前国际上尚未解决液闪的稳定性问题
- IHEP/科迪公司联合研制的掺钆液闪在性能上已达到 指标,正在进行长期稳定性研究
- 下一步要解决的问题:
 - 长期稳定性
 - 批量生产
 - liters → 200 t
 - Mixing
 - Purification
 - Quality control
 - transportation

大亚湾中微子探测器

探测器模块的三层结构:

- I. 靶层为掺钆液闪, 做为中微子反β衰变的靶。 只有在钆上俘获的中子才被当成好事例
- II. 集能层 (γ-catcher)为普通液闪, 收集中子和 正电子的伽马射线能量
- III. 防护层为矿物油,屏蔽PMT玻璃与氡气的天然放射性

各层由有机玻璃隔开, PMT安装在矿物油中

Cerenkov detector

- Water Cerenkov imaging
- Water Cerenkov calorimeter
- **DIRC**

Super-Kamiokande detector

50 kt water Cherenkov (22.5 kt fiducial volume) ~ 10,000 20" PMT

Neutrino detection

v + e scattering: forward peaking

Cerenkov rings

Water cherenkov calorimeter

DIRC(detection of internally reflected Cherenkov light)

Ideas to reduce the cost

- Radiator:
 - high quality acrylic slabs instead of quartz bars
- Readout:
 - multi-anode PMT (single PE ?)
 - MCP + timing info. (100 ps ?)
 - a mirror + APD array (noise ?)

A collaboration between IHEP and GSI, Germany

小结

- 在BESIII建设的推动下,国内高能物理探测器的研究近年来得到很大的发展。部分探测器的研究,制造已进入世界先进水平。
- 一些新型探测器的预研正在展开,有望以我们自己 独特的技术参与国际合作,在国际上占领一席之地
- 高能探测器也可以在各方面得到应用,有关技术的 研发正在进行,国内厂家也已有一批高技术产品。
- 相信我国的高能探测器研究将能得到更大的发展, 为我国的高能物理,核物理与粒子天体物理发展奠 定基础,同时推广应用其技术,为国家安全、反恐、 毒品爆炸物探测、核医疗成像、工业探伤与成像等 众多应用领域服务。