BOOST Introduction

Z.Y. Deng M. He H.M. Liu
Y.J. Mao Z.Y. You Y.Yuan
BOOST Project
(BESIII Object Oriented Simulation Tool)

Event GENERBES Generator → Geometry Geant4 Tracking → Detector Digitization Response

HepEvt format → Hit objects → Raw data MC truth
BOOST Project

(BESIII Object Oriented Simulation Tool)

- **Components**
 - Generator
 - Particles and physics processes
 - Magnetic field
 - Material
 - MC truth
 - Data I/O
 - User interface
 - Geometry
 - Hits recording
 - Digitization

- common parts

- sub-detector parts
BOOST code structure

boost/

bes/

src/ source c++ codes
include/ header files

gen/ event generators
phy/ physics processes
tru/ MC truth
gmk/ common makefiles
mac/ common card files
dat/ geometry data files
exe/ main program for execution
doc/ documentations
mdc/ main drift chamber
tof/ time of flight
emc/ electromagnetic calorimeter
muc/ muon chamber
BOOST Project
(BESIII Object Oriented Simulation Tool)

Developers

- Liu Huaimin: common parts
- Yuan Ye: MDC
- Deng Ziyan: TOF & common parts
- Fu Chengdong/He Miao: EMC
- Peking University: MUC & xml geometry
BOOST Project

(BESIII Object Oriented Simulation Tool)

✓ Phase 1: Framework prototype, simple geometry with hit
 ✓ Finished, BOOST prototype realized in May, 2003

✓ Phase 2: Detailed detector with simple digitization
 ✓ Finished, now digits and MC truth output can be used for reconstruction

➢ Phase 3: Detailed digitization, data/MC comparisons
 ➢ In progress, need information from beam test and data. A long-term work!
Geant4 and BOOST releases

◆ Geant4
 ➢ Release 6.1 March, 2004
 ➢ Release 6.2 June, 2004
 ➢ Release 7.0 December, 2004
 ➢ Patch of 7.0 February, 2005

◆ BOOST (mantained by cvs)
 ➢ 'boost-1-0' (March, 2004) ----Geant4.6.1
 ➢ 'boost-1-1' (June, 2004) ----Geant4.6.2
 ➢
 ➢ 'boost-2-0' (February, 2005) ----Geant4.7.0
 ➢ 'boost-2-1' (May, 2005) ---- Geant4.7.0+p01
BOOST Current Status

geometry

From boost-2-1

barrel: MDC, TOF, EMC, SCM, MUC

end-cap: TOF, EMC, MUC
BOOST Current Status

generator

genbes: (BESII generator system)
- Generate events in an ASCII file which supports HEPEVT interface with Geant4
- The same user interface as BESII
 - genbes.cards, genbes.user
- All BESII generators can be used in BOOST

tester: (single-particle generator for debugging)
- Shoot particles of given type
- to a given direction
- with given kinetic energy
- Users can randomize above quantities
BOOST Current Status

generator: rhopi

\[J/\psi \rightarrow \rho \pi \rightarrow \pi^+\pi^- \gamma\gamma \]

Hits in barrel MUC
(\(\pi\) - punch through)

Shower in EMC
BOOST Current Status
processes & magnetic field & material

Physics processes
- BesPhysicsList constructed with Geant4 classes
- Many hadronic models installed, LHEP, LHEP-GN, QGSP-GN, …
- More research on them needed to choose suitable ones for BESIII physics

Magnetic field
- 1 Tesla uniform magnetic field defined inside SCM

Material
- All materials needed in BOOST defined in XML
BOOST Current Status

hits and digitization

Hits recording
- Finished last year

digitization
- **MDC**
 - Drift distance \rightarrow drift time
 - dE/dx
 - Wire resolution added
 - Simple background added
- **TOF**
 - Detailed digitization
 - Light emission & light propagation
 - PMT response & threshold discrimination
- **EMC**
 - waveform added
 - Simulate main amplifier output
 - Provide risetime to eliminate noise
 - No noise, so not used now
- **MUC**
 - Digit information added
BOOST Current Status

MC truth

Purpose

- To provide truth information for reconstruction debugging
- Similar to MCMADE in BESII

What to save

- True state of the particles and their association with detector response
 - Particle
 - particles from generator
 - uninterrupted decayed daughters
 - Detector response
 - hits in sub-detectors associated with particles
BOOST Current Status

MC truth

- **Track and vertex** (associated with particle)
 - Track
 - PDGcode
 - charge
 - original vertex
 - terminal vertex
 - four-momentum
 - decayed daughters
 - Vertex
 - parent track
 - position
 - time

- **truth hits** (associated with track)
 - Considering demand of each reconstruction developer
 - MDC
 - Hit history
 - TOF
 - First-hit
 - EMC
 - Total energy loss
 - MUC
 - Hit history
BOOST Current Status

Data I/O

◆ **Ascii data I/O**

- It's temporary, but useful in software (SIM + REC) development
- Ascii data format fixed for the moment
- MC truth (TRUTH) & Raw data (DIGI) included in one file
 - EVHEAD
 - TRACKTRUTH, VERTEXTRUTH
 - MDCTRUTH, MDCDIGI
 - TOFTRUTH, TOFDIGI
 - EMCTRUTH, EMCDIGI
 - MUCTRUTH, MUCDIGI

- Users can turn on/off TRUTH and DIGI part of each sub-detector in run cards
BOOST Current Status

User interface

- **Friendly to both users and developers**
 - source ~dengzy/.boostenv
 - cvs co boost
 - edit boost.cards & boost.user
 - more controls in run cards

- **Run background/terminal/interactive/PBS job freely**
 - boost -b/-t/-i/-q
 - use 'boost -h' for detail
From LHC experience
- G4 direct comparison with G3
- G4 is slower (1.5~2) than G3
- G4 tracking particle to 0 energy

Compared with SIMBES
- SIMBES (G3/BESII), BOOST (G4/BESIII)

How to compare
- Similar cuts
 - CUTE CUTM (10KeV), range cuts (1mm)
- Same platform (Besfarm7)
- Physics events used (dimuon, rhopi, bhabha)
BOOST Performance

Speed

<table>
<thead>
<tr>
<th>Event</th>
<th>SIMBES</th>
<th>BOOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee -> uu</td>
<td>0.122</td>
<td>0.189</td>
</tr>
<tr>
<td>J/ψ -> ρ π</td>
<td>0.471</td>
<td>0.763</td>
</tr>
<tr>
<td>ee -> ee</td>
<td>0.736</td>
<td>1.224</td>
</tr>
</tbody>
</table>

- BOOST 1.5 times slower than SIMBES
- More to do about speed improvement
 - Threshold cut in digitization
 - Speed of hadronic models to be compared
- Stable (no crash for 100,000 events)
BOOST Integration to BOSS framework

Different developing environment

- **BOOST**
 - On besfarm
 - Configured with gmake
 - Based on GEANT4

- **BOSS**
 - On koala
 - Configured with CMT
 - Based on GAUDI

Integration Status

- BOOSTalg algorithm/packages created in BOSS

- Key functions of BOOST realized in BOSS

- Interface of saving data to TDS is ok

- Codes imported into cvs