BOOST Introduction

Z.Y. Deng M. He H.M. Liu Y.J. Mao Z.Y. You Y.Yuan

(BESIII Object Oriented Simulation Tool)

(BESIII Object Oriented Simulation Tool)

Components

- > Generator
- > Particles and physics processes
- Magnetic field
- Material
- > MC truth
- > Data I/O
- User interface
- Geometry
- > Hits recording
- Digitization

common parts

sub-detector parts

BOOST code structure

boost/

```
common part
         src/
                   source c++ codes
         include/
                   header files
gen/ ...
                    event generators
phy/ ...
                    physics processes
tru/ ...
                    MC truth
gmk/ ...
                     common makefiles
mac/ ...
                     common card files
dat/ ...
                     geometry data files
                     main program for execution
exe/ ...
doc/ ...
                     documentations
mdc/ ...
                     main drift chamber
tof/ ...
                     time of fight
emc/ ...
                     electromagnetic calorimeter
                     muon chamber
```

(BESIII Object Oriented Simulation Tool)

- ◆ Developers
 - ▶ Liu Huaimin: common parts
 - Yuan Ye:
 - Deng Ziyan: TOF & common parts
 - ➤ Fu Chengdong/He Miao: EMC
 - Peking University: MUC & xml geometry

(BESIII Object Oriented Simulation Tool)

- ✓ Phase 1: Framework prototype, simple geometry with hit
 - ✓ Finished, BOOST prototype realized in May,2003
- ✓ Phase 2: Detailed detector with simple digitization.
 - ✓ Finished, now digits and MC truth output can be used for reconstruction
- > Phase 3: Detailed digitization, data/MC comparisons
 - In progress, need information from beam test and data. A long-term work!

Geant4 and BOOST releases

Geant 4

- Release 6.1 March, 2004
- Release 6.2 June, 2004
- Release 7.0 December, 2004
- Patch of 7.0 February, 2005

BOOST (mantained by cvs)

- 'boost-1-0' (March, 2004) -----Geant4.6.1
- 'boost-1-1' (June, 2004) -----Geant4.6.2
- **>**
- 'boost-2-0' (February, 2005) ----Geant4.7.0
- 'boost-2-1' (May, 2005) ----- Geant4.7.0+p01

BOOST Current Status geometry

From boost-2-1

barrel: MDC, TOF, EMC, SCM, MUC

end-cap: TOF, EMC, MUC

BOOST Current Status generator

- genbes: (BESII generator system)
 - Generate events in an ASCII file which supports HEPEVT interface with Geant4
 - The same user interface as BESII
 - genbes.cards , genbes.user
 - All BESII generators can be used in BOOST
- tester: (single-particle generator for debugging)
 - Shoot particles of given type
 - to a given direction
 - with given kinetic energy
 - Users can randomize above quantities

BOOST Current Status

generator: rhopi

BOOST Current Status processes & magnetic field & material

Physics processes

- BesPhysicsList constructed with Geant4 classes
- Many hadronic models installed, LHEP, LHEP-GN, QGSP-GN,
- More research on them needed to choose suitable ones for BESIII physics

Magnetic field

1 Tesla uniform magnetic field defined inside SCM

◆Material

All materials needed in BOOST defined in XML

BOOST Current Status hits and digitization

- Hits recording
 - Finished last year
- digitization
 - > MDC
 - Drift distance-> drift time
 - dE/dx
 - Wire resolution added
 - Simple background added
 - > TOF
 - Detailed digitization
 - Light emission & light propagation
 - PMT response & threshold discrimination

- > EMC
 - waveform added
 - Simulate main amplifier output
 - Provide risetime to eliminate noise
 - No noise, so not used now
- > MUC
 - Digit information added

BOOST Current Status MC truth

→ Purpose

- To provide truth information for reconstruction debugging
- ➤ Similar to <u>MCMADE</u> in BESII

What to save

- True state of the particles and their association with detector response
 - Particle
 - particles from generator
 - uninterrupted decayed daughters
 - Detector response
 - hits in sub-detectors associated with particles

BOOST Current Status MC truth

- Track and vertex (associated with particle)
 - > Track
 - PDGcode
 - charge
 - original vertex
 - terminal vertex
 - four-momentum
 - decayed daughters
 - Vertex
 - parent track
 - position
 - time

- truth hits
 (associated with track)
 - Considering demand of each reconstruction developer
 - > MDC
 - Hit history
 - > TOF
 - First-hit
 - > EMC
 - Total energy loss
 - > MUC
 - Hit history

BOOST Current Status <u>Data I/O</u>

◆Ascii data I/O

- > It's temporary, but useful in software (SIM + REC) development
- Ascii data format fixed for the moment
- MC truth (TRUTH) & Raw data (DIGI) included in one file
 - EVHEAD
 - TRACKTRUTH, VERTEXTRUTH
 - MDCTRUTH, MDCDIGI
 - TOFTRUTH, TOFDIGI
 - EMCTRUTH, EMCDIGI
 - MUCTRUTH, MUCDIGI
- Users can turn on/off TRUTH and DIGI part of each sub-detector in run cards

BOOST Current Status <u>User interface</u>

- Friendly to both users and developers
 - source ~dengzy/.boostenv
 - > cvs co boost
 - edit boost.cards & boost.user
 - more controls in run cards
- Run background/terminal/interactive/PBS job freely
 - boost -b/-t/-i/-q
 - use 'boost -h' for detail

BOOST Performance <u>Speed</u>

◆ From LHC experience

- G4 direct comparison with G3
- G4 is slower (1.5~2) than G3
- G4 tracking particle to 0 energy

Compared with SIMBES

SIMBES (G3/BESII), BOOST (G4/BESIII)

How to compare

- > Similar cuts
 - CUTE CUTM (10KeV), range cuts (1mm)
- Same platform (Besfarm7)
- Physics events used (dimuon, rhopi, bhabha)

BOOST Performance <u>Speed</u>

CPU time (s) for one event Besfarm7 (PIII/933)		
Event	SIMBES	BOOST
ee -> uu	0.122	0.189
J/ ->	0.471	0.763
ee -> ee	0.736	1.224

- ◆ BOOST 1.5 times slower than SI MBES
- More to do about speed improvement
 - Threshold cut in digitization
 - Speed of hadronic models to be compared
- Stable (no crash for 100,000 events)

BOOST Integration to BOSS framework

- Different developing < Integration Status</p> environment
 - BOOST
 - On besfarm
 - Configured with gmake
 - Based on GFANT4
 - > BOSS
 - On koala
 - Configured with CMT
 - Based on GAUDI

- - BOOSTAIg algorithm/packages created in BOSS
 - Key functions of BOOST realized in BOSS
 - Interface of saving data to TDS is ok
 - Codes imported into cvs